Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Pluripotent cells in farm animals: state of the art and future perspectives

Monika Nowak-Imialek A B and Heiner Niemann A
+ Author Affiliations
- Author Affiliations

A Institut of Farm Animal Genetics, Friedrich-Loefller-Institut (FLI), Biotechnology, Höltystrasse 10, Mariensee, 31535 Neustadt, Germany.

B Corresponding author. Email: monika.nowak@fli.bund.de

Reproduction, Fertility and Development 25(1) 103-128 https://doi.org/10.1071/RD12265
Published: 4 December 2012

Abstract

Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.

Additional keywords: cell fusion, embryonic stem cells, farm animals, germ cells, induced pluripotent stem cells, reprogrammed cells.


References

Ahn, K. S., Won, J. Y., Heo, S. Y., Kang, J. H., Yang, H. S., and Shim, H. (2007). Transgenesis and nuclear transfer using porcine embryonic germ cells. Cloning Stem Cells 9, 461–468.
Transgenesis and nuclear transfer using porcine embryonic germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKrtw%3D%3D&md5=920c3bb2a6f1f399d021042ab999f62fCAS |

Alberio, R., Croxall, N., and Allegrucci, C. (2010). Pig epiblast stem cells depend on activin/nodal signalling for pluripotency and self-renewal. Stem Cells Dev. 6, 484–495.

Anand, T., Kumar, D., Singh, M. K., Shah, R. A., Chauhan, M. S., Manik, R. S., Singla, S. K., and Palta, P. (2011). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 50–58.
Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlChuw%3D%3D&md5=50617dd324fee2be8b0c6b25114bd263CAS |

Anderson, G. B., Choi, S. J., and Bondurant, R. H. (1994). Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology 42, 204–212.
Survival of porcine inner cell masses in culture and after injection into blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVartg%3D%3D&md5=b6c3b8d2b0c40ef6e3a939e0f17c9042CAS |

Aponte, P. M., Soda, T., van de Kant, H. J., and de Rooij, D. G. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65, 1828–1847.
Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCksbs%3D&md5=0f89ec2b8951463d24dfa728625a76c9CAS |

Apostolou, E., and Hochedlinger, K. (2011). Stem cells: iPS cells under attack. Nature 474, 165–166.
Stem cells: iPS cells under attack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKksLo%3D&md5=4b7f49d5986268a7c7aed4f4e44592dfCAS |

Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W., and Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Production of goats by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFWrsbY%3D&md5=0ca8fa79977c85d8b0f108401a2991a8CAS |

Bao, L., He, L., Chen, J., Wu, Z., Liao, J., Rao, L., Ren, J., Li, H., Zhu, H., Qian, L., Gu, Y., Dai, H., Xu, X., Zhou, J., Wang, W., Cui, C., and Xiao, L. (2011). Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res. 21, 600–608.
Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCgs78%3D&md5=494bfecc7ddc2d136ba7b6de44f2aa3fCAS |

Barberi, T., Klivenyi, P., Calingasan, N. Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A. L., Bruses, J., Rubio, M. E., Topf, N., Tabar, V., Harrison, N. L., Beal, M. F., Moore, M. A., and Studer, L. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in Parkinsonian mice. Nat. Biotechnol. 21, 1200–1207.
Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in Parkinsonian mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Clsbg%3D&md5=469f7ea787468d911ffc854c76861bdfCAS |

Battut, I., Colchen, S., Fieni, F., Tainturier, D., and Bruyas, J. F. (1997). Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet. J. Suppl. 25, 60–62.

Berg, D. K., Li, C., Asher, G., Wells, D. N., and Oback, B. (2007). Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod. 77, 384–394.
Red deer cloned from antler stem cells and their differentiated progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCrtb4%3D&md5=cdb21068e4ddafe28252489c339a12c1CAS |

Blomberg, L. A., Schreier, L. L., and Talbot, N. C. (2008). Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol. Reprod. 75, 450–463.
Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Cku7k%3D&md5=0511141fee89fe78f9e00c303d08fabaCAS |

Boiani, M., Kehler, J., and Schöler, H. R. (2004). Activity of the germline-specific Oct4–GFP transgene in normal and clone mouse embryos. Methods Mol. Biol. 254, 1–34.
| 1:CAS:528:DC%2BD2cXjsleqt7Y%3D&md5=84f0ccba3edf541b54354a49059d1035CAS |

Bordignon, V., Keyston, R., Lazaris, A., Bilodeau, A. S., Pontes, J. H., Arnold, D., Fecteau, G., Keefer, C., and Smith, L. C. (2003). Transgene expression of green fluorescent protein and germline transmission in cloned calves derived from in vitro-transfected somatic cells. Biol. Reprod. 68, 2013–2023.
Transgene expression of green fluorescent protein and germline transmission in cloned calves derived from in vitro-transfected somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggs7s%3D&md5=18eae722b7d77f4fd69b6bb321fae641CAS |

Borjigin, U., Davey, R., Hutton, K., and Herrid, M. (2010). Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod. Fertil. Dev. 22, 733–742.
Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCqtL4%3D&md5=67d403ebd0b69dbc5e2e5bfb78a74930CAS |

Brambrink, T., Hochedlinger, K., Bell, G., and Jaenisch, R. (2006). ESCs derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl. Acad. Sci. USA 103, 933–938.
ESCs derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKgt7s%3D&md5=7070fa968e23cf293a113ac259daf26aCAS |

Brevini, T. A. L., Cillo, F., and Gandolfi, F. (2005). Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reprod. Fertil. Dev. 17, 235.
Establishment and molecular characterization of pig parthenogenetic embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Brevini, T. A., Antonini, S., Cillo, F., Crestan, M., and Gandolfi, F. (2007). Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology 68, S206–S213.
Porcine embryonic stem cells: facts, challenges and hopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitb0%3D&md5=c78420ba77380c0b21d4e9db8f3ffcd1CAS |

Brevini, T. A., Pennarossa, G., and Gandolfi, F. (2010a). No shortcuts to pig embryonic stem cells. Theriogenology 74, 544–550.
No shortcuts to pig embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjmslSktw%3D%3D&md5=bd0d4cfe699ab4d5f317d4ef8c6a4263CAS |

Brevini, T. A., Pennarossa, G., Attanasio, L., Vanelli, A., Gasparrini, B., and Gandolfi, F. (2010b). Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. 6, 484–495.
Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCnt7bL&md5=62da610eb51105c11460f5af77d481f8CAS |

Brunetti, D., Perota, A., Lagutina, I., Colleoni, S., Duchi, R., Calabrese, F., Seveso, M., Cozzi, E., Lazzari, G., Lucchini, F., and Galli, C. (2008). Transgene expression of green fluorescent protein and germline transmission in cloned pigs derived from in vitro-transfected adult fibroblasts. Cloning Stem Cells 10, 409–420.
Transgene expression of green fluorescent protein and germline transmission in cloned pigs derived from in vitro-transfected adult fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGhtbjI&md5=20784742601627f43cd16745d28b8c48CAS |

Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q. L., and Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298.
Capture of authentic embryonic stem cells from rat blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFyisA%3D%3D&md5=e9fc3dc252548399245305158a6e5befCAS |

Byrne, J. A., Pedersen, D. A., Clepper, L. L., Nelson, M., Sanger, W. G., Gokhale, S., Wolf, D. P., and Mitalipov, S. M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497–502.
Producing primate embryonic stem cells by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrtb7E&md5=a8507792ac49d03f08b6727e231dc662CAS |

Cao, S., Wang, F., Chen, Z., Liu, Z., Mei, C., Wu, H., Huang, J., Li, C., Zhou, L., and Liu, L. (2009). Isolation and culture of primary bovine embryonic stem-cell colonies by a novel method. J. Exp. Zool. A Ecol. Genet. Physiol. 311A, 368–376.
Isolation and culture of primary bovine embryonic stem-cell colonies by a novel method.Crossref | GoogleScholarGoogle Scholar |

Cao, H., Yang, P., Pu, Y., Sun, X., Yin, H., Zhang, Y., Zhang, Y., Li, Y., Liu, Y., Fang, F., Zhang, Z., Tao, Y., and Zhang, X. (2012). Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming-factor fusion proteins. Int. J. Biol. Sci. 8, 498–511.
Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming-factor fusion proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVOmt7s%3D&md5=5f3ed2cab26b1ebf5317837e80e37e1dCAS |

Chan, E. M., Ratanasirintrawoot, S., Park, I. H., Manos, P. D., Loh, Y. H., Huo, H., Miller, J. D., Hartung, O., Rho, J., Ince, T. A., Daley, G. Q., and Schlaeger, T. M. (2009). Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27, 1033–1037.
Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GlsrjE&md5=0e47b3658e49f03c5fbdc07fd519cf52CAS |

Chang, M. Y., Kim, D., Kim, C. H., Kang, H. C., Yang, E., Moon, J. I., Ko, S., Park, J., Park, K. S., Lee, K. A., Hwang, D. Y., Chung, Y., Lanza, R., and Kim, K. S. (2010). Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells. PLoS ONE 5, e9838.
Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Chen, L. R., Shiue, Y. L., Bertolini, L., Medrano, J. F., BonDurant, R. H., and Anderson, G. B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195–212.
Establishment of pluripotent cell lines from porcine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFKqsrY%3D&md5=6d32d8c93f82d5c6beaa2d3ae2469046CAS |

Cherny, R. A., Stokes, T. M., Merei, J., Lom, L., Brandon, M. R., and Williams, R. L. (1994). Strategies for the isolation and characterization of bovine embryonic stem cells. Reprod. Fertil. Dev. 6, 569–575.
Strategies for the isolation and characterization of bovine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FlvVSksQ%3D%3D&md5=079c752ba77be45fd54b749867da2b23CAS |

Chesné, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–369.
Cloned rabbits produced by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar |

Choi, S. J., and Anderson, G. B. (1998). Development of tumours from bovine primordial germ cells transplanted to athymic mice. Anim. Reprod. Sci. 52, 17–25.
Development of tumours from bovine primordial germ cells transplanted to athymic mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czpslSisA%3D%3D&md5=7aefecd54344e7a1908fac726b4be3e8CAS |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646.
Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Gntbo%3D&md5=a7f0425a498e6cfa23102d910e26fdd4CAS |

Conrad, S., Renninger, M., Hennenlotter, J., Wiesner, T., Just, L., Bonin, M., Aicher, W., Bühring, H. J., Mattheus, U., Mack, A., Wagner, H. J., Minger, S., Matzkies, M., Reppel, M., Hescheler, J., Sievert, K. D., Stenzl, A., and Skutella, T. (2008). Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349.
Generation of pluripotent stem cells from adult human testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSjsLjI&md5=1b5fa6d51f7a5f5295934d14fee72ad1CAS |

Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.
Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVOjtLw%3D&md5=d5c7af6c719775f1c1342eef0f0d8477CAS |

Culty, M. (2009). Gonocytes, the forgotten cells of the germ-cell lineage. Birth Defects Res. C Embryo Today 87, 1–26.
Gonocytes, the forgotten cells of the germ-cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrsrY%3D&md5=b3ebe28351b0454bd49eff57a26e1befCAS |

Curran, S., Urven, L., and Ginther, O. J. (1997). Distribution of putative primordial germ cells in equine embryos. Equine Vet. J. Suppl. 25, 72–76.

Dattena, M., Chessa, B., Lacerenza, D., Accardo, C., Pilichi, S., Mara, L., Chessa, F., Vincenti, L., and Cappai, P. (2006). Isolation, culture and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol. Reprod. Dev. 73, 31–39.
Isolation, culture and characterization of embryonic cell lines from vitrified sheep blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ntbzM&md5=197fc3c9bc81af12101d190eeb72dc2aCAS |

De, A. K., Malakar, D., and Akshey, Y. S. (2008). Comparision of different methods of isolation of embryonic stem cell-like cells from in vitro-produced goat blastocyst. Reprod. Fertil. Dev. 20, 219.
Comparision of different methods of isolation of embryonic stem cell-like cells from in vitro-produced goat blastocyst.Crossref | GoogleScholarGoogle Scholar |

De Miguel, M. P., Fuentes-Julián, S., and Alcaina, Y. (2010). Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev. 6, 633–649.
Pluripotent stem cells: origin, maintenance and induction.Crossref | GoogleScholarGoogle Scholar |

Deng, Y., Liu, Q., Luo, C., Chen, S., Li, X., Wang, C., Liu, Z., Lei, X., Zhang, H., Sun, H., Lu, F., Jiang, J., and Shi, D. (2012). Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev. , .
Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.Crossref | GoogleScholarGoogle Scholar |

De Rooij, D. G. (1998). Stem cells in the testis. Int. J. Exp. Pathol. 79, 67–80.
Stem cells in the testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cznsFSgug%3D%3D&md5=31034712055474ffe3c2fb85e8ee388aCAS |

Desmarais, J. A., Demers, S. P., Suzuki, J., Laflamme, S., Vincent, P., Laverty, S., and Smith, L. C. (2011). Trophoblast stem-cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos. Reproduction 141, 321–332.
Trophoblast stem-cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Crtrg%3D&md5=14eef95798adebf611611b295fdf217fCAS |

Desponts, C., and Ding, S. (2010). Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol. Biol. 636, 207–218.
Using small molecules to improve generation of induced pluripotent stem cells from somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVKjtL8%3D&md5=8f32a6fa63e3494704c9302cc569935dCAS |

Ding, J., Guo, Y., Liu, S., Yan, Y., Chang, G., Kou, Z., Zhang, Y., Jiang, Y., He, F., Gao, S., and Sang, J. (2009). Embryonic stem cells derived from somatic cloned and fertilized blastocysts are post-transcriptionally indistinguishable: a microRNA and protein profile comparison. Proteomics 9, 2711–2721.
Embryonic stem cells derived from somatic cloned and fertilized blastocysts are post-transcriptionally indistinguishable: a microRNA and protein profile comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOmt7g%3D&md5=ea710581c2c5ce31512b4bc6dbf73824CAS |

Dirami, G., Ravindranath, N., Pursel, V., and Dym, M. (1999). Effects of stem-cell factor and granulocyte macrophage–colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol. Reprod. 61, 225–230.
Effects of stem-cell factor and granulocyte macrophage–colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKgu7s%3D&md5=108e92375d1e8a5b3a56c4487ad45738CAS |

Do, J. T., and Schöler, H. R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949.
Nuclei of embryonic stem cells reprogram somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSiu7bE&md5=66b2361178c911cd6c9bae1f1b634e60CAS |

Do, J. T., and Schöler, H. R. (2005). Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Reprod. Fertil. Dev. 17, 143–149.
Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential.Crossref | GoogleScholarGoogle Scholar |

Do, J. T., Han, D. W., Gentile, L., Sobek-Klocke, I., Stehling, M., Lee, H. T., and Scholer, H. R. (2007). Erasure of cellular memory by fusion with pluripotent cells. Stem Cells 25, 1013–1020.
Erasure of cellular memory by fusion with pluripotent cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Kmt7o%3D&md5=dfa1ab37b726d8d4bb3c60ac2d4e41ccCAS |

Do, J. T., Choi, H. W., Choi, Y., and Schöler, H. R. (2011). Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues. Stem Cells Dev. 20, 1063–1069.
Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.Crossref | GoogleScholarGoogle Scholar |

Dutta, R., Malakar, D., Khate, K., Sahu, S., Akshey, Y., and Mukesh, M. (2011). A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntESCs obtained from these embryos. Theriogenology 76, 851–863.
A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntESCs obtained from these embryos.Crossref | GoogleScholarGoogle Scholar |

Enders, A. C., Lantz, K. C., Liu, I. K., and Schlafke, S. (1988). Loss of polar trophoblast during differentiation of the blastocyst of the horse. J. Reprod. Fertil. 83, 447–460.
Loss of polar trophoblast during differentiation of the blastocyst of the horse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3os1Gntg%3D%3D&md5=a5603b79f0a287d67d887bdb4be4fb6bCAS |

Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., Cai, J., Lai, L., and Pei, D. (2009). Generation of induced pluripotent stem-cell lines from Tibetan miniature pig. J. Biol. Chem. 284, 17 634–17 640.
Generation of induced pluripotent stem-cell lines from Tibetan miniature pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWks7g%3D&md5=6264d0903ea082f739ccfa30037a8163CAS |

Esteban, M. A., Peng, M., Deli, Z., Cai, J., Yang, J., Xu, J., Lai, L., and Pei, D. (2010). Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62, 277–282.
| 1:CAS:528:DC%2BC3cXktVCkt7s%3D&md5=e9de489a07dc47f363bb2b172a86acd7CAS |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Establishment in culture of pluripotential cells from mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3itV2qsg%3D%3D&md5=4d4a83e7939a99026c895878c049fe10CAS |

Evans, M. J., Notarianni, E., Laurie, S., and Moor, R. M. (1990). Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33, 125–128.
Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., and Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. USA 106, 10 993–10 998.
Derivation of induced pluripotent stem cells from pig somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSnur0%3D&md5=682ff04db0d6533f6bda5e610e816c37CAS |

Flasza, M., Shering, A. F., Smith, K., Andrews, P. W., Talley, P., and Johnson, P. A. (2003). Reprogramming in inter-species embryonal carcinoma–somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells 5, 339–354.
Reprogramming in inter-species embryonal carcinoma–somatic cell hybrids induces expression of pluripotency and differentiation markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislaruw%3D%3D&md5=04d164d01c3c6ef16530f1a6f7826df7CAS |

Fujihara, M., Kim, S. M., Minami, N., Yamada, M., and Imai, H. (2011). Characterization and in vitro culture of male germ cells from developing bovine testis. J. Reprod. Dev. 57, 355–364.
Characterization and in vitro culture of male germ cells from developing bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOiur0%3D&md5=e9190cf651ad555b9022624ade71b8b0CAS |

Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Pregnancy: a cloned horse born to its dam twin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVektbc%3D&md5=8ccbbbe7b6655eda1eeaa73f9776ad21CAS |

Garg, S., Dutta, R., Malakar, D., Jena, M. K., Kumar, D., Sahu, S., and Prakash, B. (2012). Cardiomyocytes rhythmically beating generated from goat embryonic stem cell. Theriogenology 77, 829–839.
Cardiomyocytes rhythmically beating generated from goat embryonic stem cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOmtrs%3D&md5=b0bf165fa3b3200ed48edd2ad9ce0170CAS |

Garrels, W., Mátés, L., Holler, S., Dalda, A., Taylor, U., Petersen, B., Niemann, H., Izsvák, Z., Ivics, Z., and Kues, W. A. (2011). Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6, e23573.
Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sqt7fM&md5=58fafae3f3363128628ecb1a54646fe0CAS |

George, A., Sharma, R., Singh, K. P., Panda, S. K., Singla, S. K., Palta, P., Manik, R., and Chauhan, M. S. (2011). Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprogram. 13, 263–272.
Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFCntL0%3D&md5=17a4dfa01c1604a31c4649b44c4757cfCAS |

Gerfen, R. W., and Wheeler, M. B. (1995). Isolation of embryonic cell lines from porcine blastocysts. Anim. Biotechnol. 6, 1–14.
Isolation of embryonic cell lines from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Gerrard, L., Zhao, D., Clark, A. J., and Cui, W. (2005). Stably transfected human embryonic stem-cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23, 124–133.
Stably transfected human embryonic stem-cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygu7Y%3D&md5=850e4eac7c0cccc14a9dba64db7e7ecfCAS |

Goel, S., Sugimoto, M., Minami, N., Yamada, M., Kume, S., and Imai, H. (2007). Identification, isolation and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–137.
Identification, isolation and in vitro culture of porcine gonocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gtrk%3D&md5=7f08e16756c5ae32c69302d43ba238e8CAS |

Goel, S., Fujihara, M., Tsuchiya, K., Takagi, Y., Minami, N., Yamada, M., and Imai, H. (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21, 696–708.
Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrurY%3D&md5=88a241eda2865c365492302ac48eb7c6CAS |

Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S. M., and Imai, H. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology 74, 1221–1232.
Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia.Crossref | GoogleScholarGoogle Scholar |

Gong, G., Roach, M. L., Jiang, L., Yang, X., and Tian, X. C. (2010). Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram. 12, 151–160.
Culture conditions and enzymatic passaging of bovine ESC-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVahtL4%3D&md5=2d305c585e863b64fcc54a18ab0afb0dCAS |

Gropp, A., and Ohno, S. (1966). The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle (Bos taurus). Z. Zellforsch. Mikrosk. Anat. 74, 505–528.
The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle (Bos taurus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltlCntw%3D%3D&md5=588ef2e8b1d4b13dbe586744c11a937eCAS |

Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., Nolte, J., Wolf, F., Li, M., Engel, W., and Hasenfuss, G. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.
Pluripotency of spermatogonial stem cells from adult mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGltbw%3D&md5=496b373cb1f4b5c9692af593c2245e23CAS |

Guest, D. J., and Allen, W. R. (2007). Expression of cell-surface antigens and embryonic stem-cell pluripotency genes in equine blastocysts. Stem Cells Dev. 16, 789–796.
Expression of cell-surface antigens and embryonic stem-cell pluripotency genes in equine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ykurjI&md5=fd7f2acd83990344006929e4295e4dc9CAS |

Habermann, F. A., Wuensch, A., Sinowatz, F., and Wolf, E. (2007). Reporter genes for embryogenesis research in livestock species. Theriogenology 68, S116–S124.
Reporter genes for embryogenesis research in livestock species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLs%3D&md5=5a194d189ede01bb54a2a091770870a7CAS |

Hall, V. J., Christensen, J., Gao, Y., Schmidt, M. H., and Hyttel, P. (2009). Porcine pluripotency cell signalling develops from the inner cell mass to the epiblast during early development. Dev. Dyn. 238, 2014–2024.
Porcine pluripotency cell signalling develops from the inner cell mass to the epiblast during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKrsbbO&md5=cba1ce4710a5427e5a6283b8ddb1b882CAS |

Hall, V. J., Kristensen, M., Rasmussen, M. A., Ujhelly, O., Dinnyés, A., and Hyttel, P. (2012). Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram. 14, 204–216.
Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCgtb0%3D&md5=7955e6de883199c3427871a997d0af73CAS |

Han, X., Han, J., Ding, F., Cao, S., Lim, S. S., Dai, Y., Zhang, R., Zhang, Y., Lim, B., and Li, N. (2011). Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res. 21, 1509–1512.
Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oqur%2FJ&md5=87c6af62bbc07d078279eacebc7d899eCAS |

Handyside, A., Hooper, M. L., Kaufmann, M. H., and Wilmut, I. (1987). Towards the isolation of embryonal stem-cell lines from the sheep. Rouxs Arch. Dev. Biol. 196, 185–190.
Towards the isolation of embryonal stem-cell lines from the sheep.Crossref | GoogleScholarGoogle Scholar |

Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., and Jaenisch, R. (2007). Treatment of sickle-cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923.
Treatment of sickle-cell anemia mouse model with iPS cells generated from autologous skin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsLbP&md5=f3e47b9e4250b5858e2f94fb92703f5dCAS |

Hanna, J. H., Saha, K., and Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525.
Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbrL&md5=55c911eea70595a18e10b2fed93307a6CAS |

He, S., Pant, D., Schiffmacher, A., Bischoff, S., Melican, D., Gavin, W., and Keefer, C. (2006). Developmental expression of pluripotency-determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Mol. Reprod. Dev. 73, 1512–1522.
Developmental expression of pluripotency-determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhtr%2FM&md5=80d08c98d3776e55f9d1112d9a341456CAS |

Hochedlinger, K., and Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038.
Monoclonal mice generated by nuclear transfer from mature B and T donor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjtr8%3D&md5=df52435e0e12cf13fb8499670e46ecdbCAS |

Honaramooz, A., Megee, S., Zeng, W., Destrempes, M. M., Overton, S. A., Luo, J., Galantino-Homer, H., Modelski, M., Chen, F., Blash, S., Melican, D. T., Gavin, W. G., Ayres, S., Yang, F., Wang, P. J., Echelard, Y., and Dobrinski, I. (2008). Adeno-associated virus (AAV)-mediated transduction of male germline stem cells results in transgene transmission after germ-cell transplantation. FASEB J. 22, 374–382.
Adeno-associated virus (AAV)-mediated transduction of male germline stem cells results in transgene transmission after germ-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSqsLY%3D&md5=b2f8f6298f6b7f803784feb70faec7daCAS |

Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K., and Ogura, A. (2010). Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J. Biol. Chem. 285, 31 362–31 369.
Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aqtrbI&md5=836ac63e37b39aa5243d6481b06afa20CAS |

Hsiao, F. S., Lian, W. S., Lin, S. P., Lin, C. J., Lin, Y. S., Cheng, E. C., Liu, C. W., Cheng, C. C., Cheng, P. H., Ding, S. T., Lee, K. H., Kuo, T. F., Cheng, C. F., Cheng, W. T., and Wu, S. C. (2011). Toward an ideal animal model to trace donor cell fates after stem-cell therapy: production of stably-labelled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene. J. Anim. Sci. 89, 3460–3472.
Toward an ideal animal model to trace donor cell fates after stem-cell therapy: production of stably-labelled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSqsr3M&md5=80705963f21471d3e694823318a1c531CAS |

Hua, J., Zhu, H., Pan, S., Liu, C., Sun, J., Ma, X., Dong, W., Liu, W., and Li, W. (2011). Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cell Reprogram. 13, 133–144.
Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltValu7g%3D&md5=840b56f0eab8b1e9830c5bf776987c41CAS |

Huang, B., Xie, T. S., Shi, D. S., Li, T., Wang, X. L., Mo, Y., Wang, Z. Q., and Li, M. M. (2007). Isolation and characterization of EG-like cells from Chinese swamp buffalo (Bubalus bubalis). Cell Biol. Int. 31, 1079–1088.
Isolation and characterization of EG-like cells from Chinese swamp buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslWlsr8%3D&md5=c67a41018347c6da1dfef6e9aa90139bCAS |

Huang, B., Cui, K., Li, T., Wang, X., Lu, F., Liu, Q., da Silva, F. M., and Shi, D. (2010a). Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein. Reprod. Domest. Anim. 45, 103–108.
Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagu74%3D&md5=6a6d485fcd8520e9b08ff9bd6cbd783eCAS |

Huang, B., Li, T., Wang, X. L., Xie, T. S., Lu, Y. Q., da Silva, F. M., and Shi, D. S. (2010b). Generation and characterization of embryonic stem-like cell lines derived from in vitro fertilization buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim. 45, 122–128.
Generation and characterization of embryonic stem-like cell lines derived from in vitro fertilization buffalo (Bubalus bubalis) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagu70%3D&md5=6c6d7eecbd212b73943885cf8a603079CAS |

Huang, B., Li, T., Alonso-Gonzalez, L., Gorre, R., Keatley, S., Green, A., Turner, P., Kallingappa, P. K., Verma, V., and Oback, B. (2011a). A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically-defined conditions of dual kinase inhibition. PLoS ONE 6, e24501.
A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically-defined conditions of dual kinase inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1alur7L&md5=809405fda67e487af599b896f1b100e7CAS |

Huang, L., Fan, N., Cai, J., Yang, D., Zhao, B., Ouyang, Z., Gu, W., and Lai, L. (2011b). Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells. Cell Reprogram. 13, 93–98.
Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltValu7w%3D&md5=3c4d128a3d5a9525bafdadb093527391CAS |

Iwasaki, S., Campbell, K. H., Galli, C., and Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol. Reprod. 62, 470–475.
Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyjtA%3D%3D&md5=c623ec86c06c55bd70211264d08c0c22CAS |

Izadyar, F., Den Ouden, K., Creemers, L. B., Posthuma, G., Parvinen, M., and De Rooij, D. G. (2003a). Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol. Reprod. 68, 272–281.
Proliferation and differentiation of bovine type A spermatogonia during long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWn&md5=ce697380286ae3d03b86620acc735b65CAS |

Izadyar, F., Den Ouden, K., Stout, T. A., Stout, J., Coret, J., Lankveld, D. P., Spoormakers, T. J., Colenbrander, B., Oldenbroek, J. K., Van der Ploeg, K. D., Woelders, H., Kal, H. B., and De Rooij, D. G. (2003b). Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126, 765–774.
Autologous and homologous transplantation of bovine spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWktw%3D%3D&md5=2ea8e80b581f2ebc46e21cd912cbbc9dCAS |

Jia, W., Yang, W., Lei, A., Gao, Z., Yang, C., Hua, J., Huang, W., Ma, X., Wang, H., and Dou, Z. (2008). A caprine chimera produced by injection of embryonic germ cells into a blastocyst. Theriogenology 69, 340–348.
A caprine chimera produced by injection of embryonic germ cells into a blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2hsw%3D%3D&md5=bb52021102aa400654efaa5c38e201caCAS |

Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., Panetta, N. J., Chen, Z. Y., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C. (2010). A non-viral mini-circle vector for deriving human iPS cells. Nat. Methods 7, 197–199.
A non-viral mini-circle vector for deriving human iPS cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Omtb8%3D&md5=efee102c32164423bed5131207b939e1CAS |

Jin, M., Wu, A., Dorzhin, S., Yue, Q., Ma, Y., and Liu, D. (2012). Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology , .
Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization.Crossref | GoogleScholarGoogle Scholar |

Kakegawa, R., Teramura, T., Takehara, T., Anzai, M., Mitani, T., Matsumoto, K., Saeki, K., Sagawa, N., Fukuda, K., and Hosoi, Y. (2008). Isolation and culture of rabbit primordial germ cells. J. Reprod. Dev. 54, 352–357.
Isolation and culture of rabbit primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeqsb%2FM&md5=adccf9323cf857006723851366a72e71CAS |

Kanatsu-Shinohara, M., Kato, M., Takehashi, M., Morimoto, H., Takashima, S., Chuma, S., Nakatsuji, N., Hirabayashi, M., and Shinohara, T. (2008a). Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells. Biol. Reprod. 79, 1121–1128.
Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltL%2FE&md5=6a13cf393f537a92b2d529d499da0840CAS |

Kanatsu-Shinohara, M., Lee, J., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Ikawa, M., Nakamura, T., Ogura, A., and Shinohara, T. (2008b). Pluripotency of a single spermatogonial stem cell in mice. Biol. Reprod. 78, 681–687.
Pluripotency of a single spermatogonial stem cell in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVaiur0%3D&md5=71c5e1161a343a4a400f4c32479f0f86CAS |

Kanatsu-Shinohara, M., Muneto, T., Lee, J., Takenaka, M., Chuma, S., Nakatsuji, N., Horiuchi, T., and Shinohara, T. (2008c). Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78, 611–617.
Long-term culture of male germline stem cells from hamster testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVaitbg%3D&md5=14a5678f8eb3b9ee59089fbe6ccd4dcdCAS |

Kato, Y., Tani, T., and Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 120, 231–237.
| 1:CAS:528:DC%2BD3cXovVajtbc%3D&md5=1d24f527517084a9fd297fd123db0287CAS |

Kawase, E., Yamazaki, Y., Yagi, T., Yanagimachi, R., and Pedersen, R. A. (2000). Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis 28, 156–163.
Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFSmsQ%3D%3D&md5=1b7d42e27f97f4ead7edead31755b566CAS |

Keefer, C. L., Baldassarre, H., Keyston, R., Wang, B., Bhatia, B., Bilodeau, A. S., Zhou, J. F., Leduc, M., Downey, B. R., Lazaris, A., and Karatzas, C. N. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–856.
Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtr4%3D&md5=c4e4444476ee967cdea2a2411371eec4CAS |

Khodadadi, K., Sumer, H., Pashaiasl, M., Lim, S., Williamson, M., and Verma, P. J. (2012). Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int. 2012, 429160.

Kim, H. S., Son, H. Y., Kim, S., Lee, G. S., Park, C. H., Kang, S. K., Lee, B. C., Hwang, W. S., and Lee, C. K. (2007). Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote 15, 55–63.
Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGis7o%3D&md5=0ba561ad68fff0770d304f92cd1f8d65CAS |

Kim, B. G., Cho, C. M., Lee, Y. A., Kim, B. J., Kim, K. J., Kim, Y. H., Min, K. S., Kim, C. G., and Ryu, B. Y. (2010a). Enrichment of testicular gonocytes and genetic modification using lentiviral transduction in pigs. Biol. Reprod. 82, 1162–1169.
Enrichment of testicular gonocytes and genetic modification using lentiviral transduction in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgt7c%3D&md5=8b74d7d927e33d1398d29f3ceac391e9CAS |

Kim, S., Kim, J. H., Lee, E., Jeong, Y. W., Hossein, M. S., Park, S. M., Park, S. W., Lee, J. Y., Jeong, Y. I., Kim, H. S., Kim, Y. W., Hyun, S. H., and Hwang, W. S. (2010b). Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18, 93–101.
Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlSit74%3D&md5=7e236c55f4cf9af431d67b0c7da571fbCAS |

Kimura, T., and Nakano, T. (2011). Induction of pluripotency in primordial germ cells. Histol. Histopathol. 26, 643–650.

Kirchhof, N., Carnwath, J. W., Lemme, E., Anastassiadis, K., Schöler, H., and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
Expression pattern of Oct-4 in preimplantation embryos of different species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtrY%3D&md5=3299a466373bc26fcb60810787a44362CAS |

Klassen, H., Warfvinge, K., Schwartz, P. H., Kiilgaard, J. F., Shamie, N., Jiang, C., Samuel, M., Scherfig, E., Prather, R. S., and Young, M. J. (2008). Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients. Cloning Stem Cells 10, 391–402.
Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zE&md5=c29e4ef26b2e8684280d7bf8e80f276cCAS |

Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., Glaser, T., Ruau, D., Han, D. W., Greber, B., Hausdörfer, K., Sebastiano, V., Stehling, M., Fleischmann, B. K., Brüstle, O., Zenke, M., and Schöler, H. R. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87–96.
Induction of pluripotency in adult unipotent germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCns70%3D&md5=d427f728860c4121b09a618d720995b4CAS |

Kruglova, A. A., Kizilova, E. A., Zhelezova, A. I., Gridina, M. M., Golubitsa, A. N., and Serov, O. L. (2008). Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res. 334, 371–380.
Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7gslWltQ%3D%3D&md5=8725cd2c70128cdc326fbaa7c2c8e20fCAS |

Kues, W. A., and Niemann, H. (2011). Advances in farm-animal transgenesis. Prev. Vet. Med. 102, 146–156.
Advances in farm-animal transgenesis.Crossref | GoogleScholarGoogle Scholar |

Kühholzer, B., Baguisi, A., and Overstrom, E. W. (2000). Long-term culture and characterization of goat primordial germ cells. Theriogenology 53, 1071–1079.
Long-term culture and characterization of goat primordial germ cells.Crossref | GoogleScholarGoogle Scholar |

Kuijk, E. W., Colenbrander, B., and Roelen, B. A. (2009). The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138, 721–731.
The effects of growth factors on in vitro-cultured porcine testicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShurrK&md5=b18aa0457f8155962208849b76e8a4f1CAS |

Kwon, D. K., Hong, S. G., Park, H. J., Kang, J. T., Koo, O. J., and Lee, B. C. (2009). Epiblast isolation by a new four-stage method (peeling) from whole bovine cloned blastocysts. Cell Biol. Int. 33, 309–317.
Epiblast isolation by a new four-stage method (peeling) from whole bovine cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWmu7Y%3D&md5=1b0173e75572b3c95470600c6a565715CAS |

Lavoir, M. C., Basrur, P. K., and Betteridge, K. J. (1994). Isolation and identification of germ cells from fetal bovine ovaries. Mol. Reprod. Dev. 37, 413–424.
Isolation and identification of germ cells from fetal bovine ovaries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3otVyntg%3D%3D&md5=938997b4c0a70b28c5acfa7c97e01feaCAS |

Ledda, S., Bogliolo, L., Bebbere, D., Ariu, F., and Pirino, S. (2010). Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species. Theriogenology 74, 534–543.
Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVersLvN&md5=44963e4f81640cbae085634c0e9c20d6CAS |

Lee, C. K., and Piedrahita, J. A. (2000). Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning 2, 197–205.
Effects of growth factors and feeder cells on porcine primordial germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mrktlaqtg%3D%3D&md5=7116e713da2e6c26e3eb58c3913843a1CAS |

Lee, C. K., Moore, K., Scales, N., Westhusin, M., Newton, G., Im, K.-S., and Piedrahita, J. A. (2000). Isolation and genetic transformation of primordial germ cell (PGC)-derived cells from cattle, goats, rabbits and rats. Asian Aust. J. Anim. Sci. 13, 587–594.

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein Shamim, M., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). DNA analysis of a putative dog clone. Nature 436, 641.
DNA analysis of a putative dog clone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=690aaaa3954a8dc17a8c4cbaab4c21fcCAS |

Lengner, C., and Jaenisch, R. (2008). Pluripotent cell isolation for regenerative medicine. Nature Reviews Molecular Cell Biology, Vol 9 No 9. Poster. Available at http://www.nature.com/nrm/posters/stemcellreprogramming/index.html

Leitch, H. G., Blair, K., Mansfield, W., Ayetey, H., Humphreys, P., Nichols, J., Surani, M. A., and Smith, A. (2010). Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137, 2279–2287.
Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSks7vJ&md5=aa31c910efee18559d221ce422a6d83fCAS |

Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W. H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429–434.
Isolation and culture of embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVKqu70%3D&md5=8077b3ed22f238ab69045a66b793087bCAS |

Li, M., Hou, Y., Sun, X. F., Sun, Q. Y., and Wang, W. H. (2004a). Improved isolation and culture of embryonic stem cells from Chinese miniature pig. J. Reprod. Dev. 50, 237–244.
Improved isolation and culture of embryonic stem cells from Chinese miniature pig.Crossref | GoogleScholarGoogle Scholar |

Li, M., Li, Y. H., Hou, Y., Sun, X. F., Sun, Q., and Wang, W. H. (2004b). Isolation and culture of pluripotent cells from in vitro-produced porcine embryos. Zygote 12, 43–48.
Isolation and culture of pluripotent cells from in vitro-produced porcine embryos.Crossref | GoogleScholarGoogle Scholar |

Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S. M., Zhou, Q., Renard, J. P., Leno, G. H., and Engelhardt, J. F. (2006a). Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 293, 439–448.
Cloned ferrets produced by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVOmsro%3D&md5=ff535c47b43dfffca518492b665b3332CAS |

Li, X., Zhou, S. G., Imreh, M. P., Ahrlund-Richter, L., and Allen, W. R. (2006b). Horse embryonic stem-cell lines from the proliferation of inner cell mass cells. Stem Cells Dev. 15, 523–531.
Horse embryonic stem-cell lines from the proliferation of inner cell mass cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFOkurk%3D&md5=6e615005f9c87a65253e034c5882e82dCAS |

Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R. E., Schulze, E. N., Song, H., Hsieh, C. L., Pera, M. F., and Ying, Q. L. (2008). Germline-competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310.
Germline-competent embryonic stem cells derived from rat blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFyisQ%3D%3D&md5=f79ed6687a9f7d9205ed2b20fe11df67CAS |

Li, Y., Cang, M., Lee, A. S., Zhang, K., and Liu, D. (2011). Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS ONE 6, e15947.
Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVynuw%3D%3D&md5=c11accbe4f91400b6630157d85374063CAS |

Lim, M. L., Vassiliev, I., Richings, N. M., Firsova, A. B., Zhang, C., and Verma, P. J. (2011). A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76, 133–142.
A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKitbs%3D&md5=c94acede1d7bdec3cb7787efcda0db37CAS |

Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X., Xiang, T., Lu, D., Chi, X., Gao, G., Ji, W., Ding, M., and Deng, H. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590.
Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCqsLjN&md5=2051371e8760c0e800125fec36f083d3CAS |

Liu, J., Balehosur, D., Murray, B., Kelly, J. M., Sumer, H., and Verma, P. J. (2012). Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77, 338–346.e1.
Generation and characterization of reprogrammed sheep induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1WjtQ%3D%3D&md5=b0924a4a699164c9618c18fcdd587674CAS |

Lü, S., Li, Y., Gao, S., Liu, S., Wang, H., He, W., Zhou, J., Liu, Z., Zhang, Y., Lin, Q., Duan, C., Yang, X. J., and Wang, C. (2010). Engineered heart tissue graft derived from somatic cell nuclear transferred embryonic stem cells improve myocardial performance in infarcted rat heart. J. Cell. Mol. Med. 14, 2771–2779.
Engineered heart tissue graft derived from somatic cell nuclear transferred embryonic stem cells improve myocardial performance in infarcted rat heart.Crossref | GoogleScholarGoogle Scholar |

Lu, Y., West, F. D., Jordan, B. J., Mumaw, J. L., Jordan, E. T., Gallegos-Cardenas, A., Beckstead, R. B., and Stice, S. L. (2012). Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells Dev. 21, 394–403.
Avian-induced pluripotent stem cells derived using human reprogramming factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGhsr8%3D&md5=7b640a30b4c53420c25cbf1be282491cCAS |

Luo, J., Megee, S., Rathi, R., and Dobrinski, I. (2006). Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73, 1531–1540.
Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhtr%2FO&md5=2d2815cbf1c66a9d3b804b8190e8bcc1CAS |

Maddox-Hyttel, P., Alexopoulos, N. I., Vajta, G., Lewis, I., Rogers, P., Cann, L., Callesen, H., Tveden-Nyborg, P., and Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–623.
Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqtLc%3D&md5=4b977283c773e54cc8147ed9d5c1a68eCAS |

Mahla, R. S., Reddy, N., and Goel, S. (2012). Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS ONE 7, e36020.
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Cgur4%3D&md5=12766bb12fc7a8cf233d24a0c72f367bCAS |

Malaver-Ortega, L. F., Sumer, H., Liu, J., and Verma, P. J. (2012). The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology , .
The state of the art for pluripotent stem cells derivation in domestic ungulates.Crossref | GoogleScholarGoogle Scholar |

Marret, C., and Durand, P. (2000). Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication. Reprod. Nutr. Dev. 40, 305–319.
Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVWqsrs%3D&md5=4ecc5e647c832d7a89c89eba5bff9d30CAS |

Martin, G. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ltV2htg%3D%3D&md5=dc7b149563b3821169a9ae8d58ce1910CAS |

Maruotti, J., Muñoz, M., Degrelle, S. A., Gómez, E., Louet, C., Monforte, C. D., de Longchamp, P. H., Brochard, V., Hue, I., Caamaño, J. N., and Jouneau, A. (2012). Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol. Reprod. Dev. , .
Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors.Crossref | GoogleScholarGoogle Scholar |

Matsui, Y., Zsebo, K., and Hogan, B. L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.
Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVGrtrw%3D&md5=a6b055b75a5c60cc56afc59ea6b8f0c6CAS |

Matsumura, H., Tada, M., Otsuji, T., Yasuchika, K., Nakatsuji, N., Surani, A., and Tada, T. (2007). Targeted chromosome elimination from ES-somatic hybrid cells. Nat. Methods 4, 23–25.
Targeted chromosome elimination from ES-somatic hybrid cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktbzM&md5=bd859c1b832fcf822f60ca7dd1f4f207CAS |

Matsunari, H., and Nagashima, H. (2009). Application of genetically-modified and cloned pigs in translational research. J. Reprod. Dev. 55, 225–230.
Application of genetically-modified and cloned pigs in translational research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFehtLg%3D&md5=736983f607637c54c8e55fc7f2e24794CAS |

Matsunari, H., Onodera, M., Tada, N., Mochizuki, H., Karasawa, S., Haruyama, E., Nakayama, N., Saito, H., Ueno, S., Kurome, M., Miyawaki, A., and Nagashima, H. (2008). Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange. Cloning Stem Cells 10, 313–324.
Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zJ&md5=5c474bfdbbc0c3cd96e11e2e981d69b8CAS |

Matveeva, N. M., Shilov, A. G., Kaftanovskaya, E. M., Maximovsky, L. P., Zhelezova, A. I., Golubitsa, A. N., Bayborodin, S. I., Fokina, M. M., and Serov, O. L. (1998). In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol. Reprod. Dev. 50, 128–138.
In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislWks7g%3D&md5=f1f999cdd72ebcc144f7992316e1419dCAS |

McBurney, M. W. (1977). Hemoglobin synthesis in cell hybrids formed between teratocarcinoma and Friend erythroleukemia cells. Cell 12, 653–662.
Hemoglobin synthesis in cell hybrids formed between teratocarcinoma and Friend erythroleukemia cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkvVOjsA%3D%3D&md5=d4b4450a5b38e06ff38d360d6fac7189CAS |

McLean, D. J., Friel, P. J., Johnston, D. S., and Griswold, M. D. (2003). Charcaterization of spermatogonial stem-cell maturation and differentiation in neonatal mice. Biol. Reprod. 69, 2085–2091.
Charcaterization of spermatogonial stem-cell maturation and differentiation in neonatal mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCntr8%3D&md5=db0d6879cc3b984a0e5889c7e9b22bbaCAS |

Miller, R. A., and Ruddle, F. H. (1977). Properties of teratocarcinoma–thymus somatic cell hybrids. Somatic Cell Genet. 3, 247–261.
Properties of teratocarcinoma–thymus somatic cell hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtF2jtLo%3D&md5=f608dc082678dd982038b27fa07cb068CAS |

Mitalipov, S., and Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol. 114, 185–199.
| 1:CAS:528:DC%2BC3cXitFCrur4%3D&md5=243e642dc6600763e7f2319a25257818CAS |

Mitalipova, M., Beyhan, Z., and First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 59–67.
Pluripotency of bovine embryonic cell line derived from precompacting embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387mvFSltg%3D%3D&md5=b926ebadc5c0f4620c787248da49d97dCAS |

Miyoshi, K., Taguchi, Y., Sendai, Y., Hoshi, H., and Sato, E. (2000). Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biol. Reprod. 62, 1640–1646.
Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsL0%3D&md5=026f3ed682833215afcc8b823fe6d4e4CAS |

Möller, A., Astron, M., and Westlin, N. (1996). Increasing incidence of Achilles tendon rupture. Acta Orthop. Scand. 67, 479–481.
Increasing incidence of Achilles tendon rupture.Crossref | GoogleScholarGoogle Scholar |

Montserrat, N., Bahima, E. G., Batlle, L., Häfner, S., Rodrigues, A. M., González, F., and Izpisúa Belmonte, J. C. (2011a). Generation of pig iPS cells: a model for cell therapy. J. Cardiovasc. Transl. Res. 4, 121–130.
Generation of pig iPS cells: a model for cell therapy.Crossref | GoogleScholarGoogle Scholar |

Montserrat, N., de Oñate, L., Garreta, E., González, F., Adamo, A., Eguizábal, C., Häfner, S., Vassena, R., and Belmonte, J. C. (2011b). Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. , .

Moore, K., and Piedrahita, J. A. (1996). Effects of heterologous haematopoietic cytokines on in vitro differentiation of cultured porcine inner cell masses. Mol. Reprod. Dev. 45, 139–144.
Effects of heterologous haematopoietic cytokines on in vitro differentiation of cultured porcine inner cell masses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGmtLs%3D&md5=3b849cb3607f4213d19d00f0e1ce5dc5CAS |

Moore, K., and Piedrahita, J. A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell. Dev. Biol. Anim. 33, 62–71.
The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFCnu7o%3D&md5=f8a1ab0bc8fd772b1a5410aac3948cacCAS |

Mueller, S., Prelle, K., Rieger, N., Petznek, H., Lassnig, C., Luksch, U., Aigner, B., Baetscher, M., Wolf, E., Mueller, M., and Brem, G. (1999). Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol. Reprod. Dev. 54, 244–254.
Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVCjt74%3D&md5=36c60028f98480d0ea2cf2ceefdd6e9bCAS |

Mugnier, S., Kervella, M., Douet, C., Canepa, S., Pascal, G., Deleuze, S., Duchamp, G., Monget, P., and Goudet, G. (2009). The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod. Biol. Endocrinol. 7, 129.
The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?Crossref | GoogleScholarGoogle Scholar |

Muñoz, M., Rodriguez, A., De Frutos, C., Caamano, J. N., Diez, C., Facal, N., and Gomez, E. (2008). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69, 1159–1164.
Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines.Crossref | GoogleScholarGoogle Scholar |

Munsie, M. J., Michalska, A. E., O’Brien, C. M., Trounson, A. O., Pera, M. F., and Mountford, P. S. (2000). Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992.
Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGiurg%3D&md5=802134db33ca17c95dc0679f5e10d1edCAS |

Muzaffar, M., Selokar, N. L., Singh, K. P., Zandi, M., Singh, M. K., Shah, R. A., Chauhan, M. S., Singla, S. K., Palta, P., and Manik, R. (2012). Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic and hand-made cloned embryos. Cell Reprogram , .

Nagy, K., Sung, H. K., Zhang, P., Laflamme, S., Vincent, P., Agha-Mohammadi, S., Woltjen, K., Monetti, C., Michael, I. P., Smith, L. C., and Nagy, A. (2011). Induced pluripotent stem-cell lines derived from equine fibroblasts. Stem Cell Rev. 7, 693–702.
Induced pluripotent stem-cell lines derived from equine fibroblasts.Crossref | GoogleScholarGoogle Scholar |

Najm, F. J., Chenoweth, J. G., Anderson, P. D., Nadeau, J. H., Redline, R. W., McKay, R. D., and Tesar, P. J. (2011). Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8, 318–325.
Isolation of epiblast stem cells from preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGqtLk%3D&md5=27220b75ade17d514e511d6e2e649db9CAS |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=832a4f8f95ae160920bbe8840420689dCAS |

Notarianni, E., Laurie, S., Moor, R. M., and Evans, M. J. (1990). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. Suppl. 41, 51–56.
| 1:STN:280:DyaK3M%2Fht1emtw%3D%3D&md5=b3248531b063eec286a9b02fc4e5d7c7CAS |

Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.
| 1:STN:280:DyaK3s7ktVSrsg%3D%3D&md5=cfccdf4058057c6664aa539f8d7effd9CAS |

Nowak-Imialek, M., Kues, W. A., Rudolph, C., Schlegelberger, B., Taylor, U., Carnwath, J. W., and Niemann, H. (2010). Preferential loss of porcine chromosomes in reprogrammed interspecies hybrids. Cell Reprogram. 12, 55–65.
Preferential loss of porcine chromosomes in reprogrammed interspecies hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOjtbY%3D&md5=84647ca524550bc9d2c91f95d904d788CAS |

Nowak-Imialek, M., Kues, W., Carnwath, J. W., and Niemann, H. (2011a). Pluripotent stem cells and reprogrammed cells in farm animals. Microsc. Microanal. 17, 474–497.
Pluripotent stem cells and reprogrammed cells in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOgsLk%3D&md5=f3fa721cf246f9e635741d5cb6b83fb1CAS |

Nowak-Imialek, M., Kues, W. A., Petersen, B., Lucas-Hahn, A., Herrmann, D., Haridoss, S., Oropeza, M., Lemme, E., Schöler, H. R., Carnwath, J. W., and Niemann, H. (2011b). Oct4–enhanced green fluorescent protein transgenic pigs: a new large-animal model for reprogramming studies. Stem Cells Dev. 20, 1563–1575.
Oct4–enhanced green fluorescent protein transgenic pigs: a new large-animal model for reprogramming studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWjs7bK&md5=d769b0ef0d3bb769c16196e5fe4acfabCAS |

Oatley, J. M., de Avila, D. M., Reeves, J. J., and McLean, D. J. (2004). Testis tissue explant culture supports survival and proliferation of bovine spermatogonial stem cells. Biol. Reprod. 70, 625–631.
Testis tissue explant culture supports survival and proliferation of bovine spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chs7s%3D&md5=e2aee86932f21b415fe00b01f2949ae5CAS |

Ock, S. A., Mohana Kumar, B., Jin, H. F., Shi, L. Y., Lee, S. L., Choe, S. Y., and Rho, G. J. (2005). Establishment of porcine embryonic stem-cell line derived from in vitro blastocysts. Reprod. Fertil. Dev. 17, 238.
Establishment of porcine embryonic stem-cell line derived from in vitro blastocysts.Crossref | GoogleScholarGoogle Scholar |

Oh, H. J., Kim, M. K., Jang, G., Kim, H. J., Hong, S. G., Park, J. E., Park, K., Park, C., Sohn, S. H., Kim, D. Y., Shin, N. S., and Lee, B. C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–647.
Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crmvFWlsw%3D%3D&md5=c9317707dfb10f2b545c51b05b1b8024CAS |

Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.
Generation of germline-competent induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVeqsL0%3D&md5=d7edf1a9609953fb8ea58c1aaa2788dbCAS |

Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953.
Generation of mouse induced pluripotent stem cells without viral vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaltLzO&md5=078f514a85d9bce04fb2741cc39c84d0CAS |

Okita, K., Hong, H., Takahashi, K., and Yamanaka, S. (2010). Generation of mouse induced pluripotent stem cells with plasmid vectors. Nat. Protoc. 5, 418–428.
Generation of mouse induced pluripotent stem cells with plasmid vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislOmsbo%3D&md5=7ecdb7402d022f3ebe8214c71b29c1cbCAS |

Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
Pig cloning by microinjection of fetal fibroblast nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1WhsL8%3D&md5=4b523007ad61627401f6cdac28338ee9CAS |

Oulad-Abdelghani, M., Bouillet, P., Décimo, D., Gansmuller, A., Heyberger, S., Dollé, P., Bronner, S., Lutz, Y., and Chambon, P. (1996). Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 135, 469–477.
Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVSntLk%3D&md5=db9ff1c8603a0670ade2e6cf016fad77CAS |

Ozawa, A., Akasaka, E., Watanabe, S., Yoshida, M., Miyoshi, K., and Sato, M. (2010). Usefulness of a non-invasive reporter system for monitoring reprogramming state in pig cells: results of a cell fusion experiment. J. Reprod. Dev. 56, 363–369.
Usefulness of a non-invasive reporter system for monitoring reprogramming state in pig cells: results of a cell fusion experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOhsLbN&md5=ec60ffb4ecedd78811a3a3f4c12d9039CAS |

Pant, D., and Keefer, C. L. (2009). Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells 11, 355–365.
Expression of pluripotency-related genes during bovine inner cell mass explant culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaktL3F&md5=0281b0d85e77e4f2d9b32e34cf96ac35CAS |

Paris, D. B., and Stout, T. A. (2010). Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology 74, 516–524.
Equine embryos and embryonic stem cells: defining reliable markers of pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjms1CjsA%3D%3D&md5=25db2771e45f984d039528020037ec99CAS |

Park, T. S., and Han, J. Y. (2000). Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol. Reprod. Dev. 56, 475–482.
Derivation and characterization of pluripotent embryonic germ cells in chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslKltbg%3D&md5=4bfff8954b5eaf922c2a981530387e09CAS |

Park, K. W., Lai, L., Cheong, H. T., Cabot, R., Sun, Q. Y., Wu, G., Rucker, E. B., Durtschi, D., Bonk, A., Samuel, M., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., and Prather, R. S. (2002). Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biol. Reprod. 66, 1001–1005.
Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCltbk%3D&md5=adcd9bd873c6f201afb41147cf79d1b5CAS |

Pashaiasl, M., Khodadadi, K., Holland, M. K., and Verma, P. J. (2010). The efficient generation of cell lines from bovine parthenotes. Cell Reprogram. 12, 571–579.
The efficient generation of cell lines from bovine parthenotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nt7jM&md5=e7b6b30cc8773ff75ca4dadeb88bff02CAS |

Pauklin, S., Pedersen, R. A., and Vallier, L. (2011). Mouse pluripotent stem cells at a glance. J. Cell Sci. 124, 3727–3732.
Mouse pluripotent stem cells at a glance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFygsA%3D%3D&md5=84cdb49ac51d72113caf0af4ed897582CAS |

Pawar, S. S., Malakar, D., De, A. K., and Akshey, Y. S. (2009). Stem cell-like outgrowths from in vitro-fertilized goat blastocysts. Indian J. Exp. Biol. 47, 635–642.
| 1:CAS:528:DC%2BD1MXhtlWht7rM&md5=15d23fa806428d06b5b22fc9ee121fc9CAS |

Pera, M. F., Reubinoff, B., and Trounson, A. (2000). Human embryonic stem cells. J. Cell Sci. 113, 5–10.
| 1:CAS:528:DC%2BD3cXhtValu7g%3D&md5=7193efc4dc827be86d175b0e3a747cb7CAS |

Pereira, C. F., Terranova, R., Ryan, N. K., Santos, J., Morris, K. J., Cui, W., Merkenschlager, M., and Fisher, A. G. (2008). Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet. 4, e1000170.
Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2.Crossref | GoogleScholarGoogle Scholar |

Petkov, S. G., and Anderson, G. B. (2008). Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture. Cloning Stem Cells 10, 263–276.
Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVGhsbw%3D&md5=f213a9baa62c2786c918bab12b186e61CAS |

Petkov, S. G., Marks, H., Klein, T., Garcia, R. S., Gao, Y., Stunnenberg, H., and Hyttel, P. (2011). In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation. Stem Cell Res. (Amst.) 6, 226–237.
In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFyjtLg%3D&md5=c7d5e7cbc6f9c2ee6678e73df3ffa989CAS |

Petters, R. M., Alexander, C. A., Wells, K. D., Collins, E. B., Sommer, J. R., Blanton, M. R., Rojas, G., Hao, Y., Flowers, W. L., Banin, E., Cideciyan, A. V., Jacobson, S. G., and Wong, F. (1997). Genetically-engineered large-animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15, 965–970.
Genetically-engineered large-animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFKjt74%3D&md5=7ae6d4f3e653c3de764832e61a0640c9CAS |

Piedrahita, J. A., Anderson, G. B., Martin, G. R., Bondurant, R. H., and Pashen, R. L. (1988). Isolation of embryonic stem cell-like colonies from porcine embryos. Theriogenology 29, 286.
Isolation of embryonic stem cell-like colonies from porcine embryos.Crossref | GoogleScholarGoogle Scholar |

Piedrahita, J. A., Anderson, G. B., and Bondurant, R. H. (1990). On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34, 879–901.
On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFKmsQ%3D%3D&md5=ac87d9987a1f6634c765170efd7694a6CAS |

Piedrahita, J. A., Moore, K., Oetama, B., Lee, C. K., Scales, N., Ramsoondar, J., Bazer, F. W., and Ott, T. (1998). Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol. Reprod. 58, 1321–1329.
Generation of transgenic porcine chimeras using primordial germ cell-derived colonies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCrurs%3D&md5=050cc9e66bbf0efd5b51afa42c67f8a6CAS |

Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Cloned pigs produced by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvkt12rug%3D%3D&md5=2d7f4f74071b92e1a08fac7e2fccb708CAS |

Price, E. M., Prather, R. S., and Foley, C. M. (2006). Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine. Stem Cells Dev. 15, 507–522.
Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine.Crossref | GoogleScholarGoogle Scholar |

Puy, L., Chuva de Sousa Lopes, S. M., Haagsman, H. P., and Roelen, B. A. (2010). Differentiation of porcine inner cell mass cells into proliferating neural cells. Stem Cells Dev. 19, 61–70.
Differentiation of porcine inner cell mass cells into proliferating neural cells.Crossref | GoogleScholarGoogle Scholar |

Reding, S. C., Stepnoski, A. L., Cloninger, E. W., and Oatley, J. M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139, 893–903.
THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLc%3D&md5=9d11cffab402742775ed1ec0744805f4CAS |

Ren, J., Pak, Y., He, L., Qian, L., Gu, Y., Li, H., Rao, L., Liao, J., Cui, C., Xu, X., Zhou, J., Ri, H., and Xiao, L. (2011). Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res. 21, 849–853.
Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVGjtrY%3D&md5=5ad156cd2838564bb1f551b900f9dc4fCAS |

Rideout, W. M., Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27.
Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOnt7k%3D&md5=81d59419fb7a366d81cbe9c5914f7c4bCAS |

Rodriguez-Sosa, J. R., Dobson, H., and Hahnel, A. (2006). Isolation and transplantation of spermatogonia in sheep. Theriogenology 66, 2091–2103.
Isolation and transplantation of spermatogonia in sheep.Crossref | GoogleScholarGoogle Scholar |

Rogers, C. S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D. A., Li, Y., Petroff, E., Vermeer, D. W., Kabel, A. C., Yan, Z., Spate, L., Wax, D., Murphy, C. N., Rieke, A., Whitworth, K., Linville, M. L., Korte, S. W., Engelhardt, J. F., Welsh, M. J., and Prather, R. S. (2008). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577.
Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cnu7k%3D&md5=d17534b7b97d9697b18dde56fdcbcca4CAS |

Roh, S., Shim, H., Hwang, W. S., and Yoon, J. T. (2000). In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts. Reprod. Fertil. Dev. 12, 1–6.
In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKltg%3D%3D&md5=029975005d3f5c27289b02ed41d993d6CAS |

Ross, J. W., Fernandez de Castro, J. P., Zhao, J., Samuel, M., Walters, E., Rios, C., Bray-Ward, P., Jones, B. W., Marc, R. E., Wang, W., Zhou, L., Noel, J. M., McCall, M. A., DeMarco, P. J., Prather, R. S., and Kaplan, H. J. (2012). Generation of an inbred miniature pig model of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 53, 501–507.
Generation of an inbred miniature pig model of retinitis pigmentosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVKrtLk%3D&md5=dce8275c23b5eb79d01ef187fdf8bf65CAS |

Rui, R., Shim, H., Moyer, A. L., Anderson, D. L., Penedo, C. T., Rowe, J. D., BonDurant, R. H., and Anderson, G. B. (2004). Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology 61, 1225–1235.
Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |

Rui, R., Qiu, Y., Hu, Y., and Fan, B. (2006). Establishment of porcine transgenic embryonic germ-cell lines expressing enhanced green fluorescent protein. Theriogenology 65, 713–720.
Establishment of porcine transgenic embryonic germ-cell lines expressing enhanced green fluorescent protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCku7s%3D&md5=c1cd4091bcacfc60a3d6faa71ecf141dCAS |

Saito, S., Strelchenko, N., and Niemann, H. (1992). Bovine embryonic stem cell-like cell lines cultured over several passages. Dev. Biol. 201, 134–141.

Saito, S., Ugai, H., Sawai, K., Yamamoto, Y., Minamihashi, A., Kurosaka, K., Kobayashi, Y., Murata, T., Obata, Y., and Yokoyama, K. K. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett. 531, 389–396.
Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFCks7o%3D&md5=b65b75f63c6b4fb358448214c8eb8f4bCAS |

Saito, S., Sawai, K., Ugai, H., Moriyasu, S., Minamihashi, A., Yamamoto, Y., Hirayama, H., Kageyama, S., Pan, J., Murata, T., Kobayashi, Y., Obata, Y., and Yokoyama, K. K. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem. Biophys. Res. Commun. 309, 104–113.
Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslehu7s%3D&md5=e1c429d942ffbab1759578d9a933f3dbCAS |

Sakkas, D., Batt, P. A., and Cameron, A. W. (1989). Development of preimplantation goat (Capra hircus) embryos in vivo and in vitro. J. Reprod. Fertil. 87, 359–365.
Development of preimplantation goat (Capra hircus) embryos in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7ls1ajsw%3D%3D&md5=ccdeddb51d99aeea562cbb30ca1c2162CAS |

Sanna, D., Sanna, A., Mara, L., Pilichi, S., Mastinu, A., Chessa, F., Pani, L., and Dattena, M. (2009). Oct4 expression in in vitro-produced sheep blastocysts and embryonic stem-like cells. Cell Biol. Int. 34, 53–60.

Sartori, C., DiDomenico, A. I., Thomson, A. J., Milne, E., Lillico, S. G., Burdon, T. G., and Whitelaw, C. B. (2012). Ovine induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram. 14, 8–19.
| 1:CAS:528:DC%2BC38XjtFaqsrY%3D&md5=a42c2c88491af17b1b3b86b55d9f3d70CAS |

Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., Blumenthal, P. D., Huggins, G. R., and Gearhart, J. D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13 726–13 731.
Derivation of pluripotent stem cells from cultured human primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVGhur0%3D&md5=9904d1d0204a031685dbcc5e07a49d65CAS |

Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Singla, S. K., Manik, R. S., and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell Reprogram. 13, 539–549.
| 1:CAS:528:DC%2BC3MXhs1yktL3K&md5=ec04dada2facc122df1d858998b8f774CAS |

Sharma, M., Kumar, R., Dubey, P. K., Verma, O. P., Nath, A., Saikumar, G., and Sharma, G. T. (2012). Expression and quantification of Oct-4 gene in blastocyst and embryonic stem cells derived from in vitro-produced buffalo embryos. In Vitro Cell. Dev. Biol. Anim. 48, 229–235.
Expression and quantification of Oct-4 gene in blastocyst and embryonic stem cells derived from in vitro-produced buffalo embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlOku7k%3D&md5=143a43f6f31e07dcf77fe7b2d51ce8dbCAS |

Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., and Liu, Q. (2007). Buffaloes (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77, 285–291.
Buffaloes (Bubalus bubalis) cloned by nuclear transfer of somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gt7s%3D&md5=aa908dc42a11a2737d408c17e426d871CAS |

Shim, H., Gutiérrez-Adán, A., Chen, L. R., BonDurant, R. H., Behboodi, E., and Anderson, G. B. (1997). Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol. Reprod. 57, 1089–1095.
Isolation of pluripotent stem cells from cultured porcine primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSmtb4%3D&md5=beee9e519a35f95289b5cf6affff51f3CAS |

Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., and Nakamura, T. (2010). Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 77, 2.
Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGmtbrP&md5=fdce7ed6666ba2fa99119915e03cc64aCAS |

Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859–860.
A cat cloned by nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1yhtbk%3D&md5=9ff528324c6c787f03423a962db35e23CAS |

Shiue, Y. L., Liou, J. F., Shiau, J. W., Yang, J. R., Chen, Y. H., Tailiu, J. J., and Chen, L. R. (2006). In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim. Reprod. Sci. 93, 134–143.
In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos.Crossref | GoogleScholarGoogle Scholar |

Smith, R. K., and Webbon, P. M. (2005). Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br. J. Sports Med. 39, 582–584.
Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MvltVOgsA%3D%3D&md5=ed77226aa1592bd524b5f19af20859d2CAS |

Smith, R. K., Korda, M., Blunn, G. W., and Goodship, A. E. (2003). Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet. J. 35, 99–102.
Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FktlOhtg%3D%3D&md5=cdcf2288293baf81290b9dc07005549fCAS |

Smith, K. P., Luong, M. X., and Stein, G. S. (2009). Pluripotency: toward a gold standard for human ES and iPS cells. J. Cell. Physiol. 220, 21–29.
Pluripotency: toward a gold standard for human ES and iPS cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGit7o%3D&md5=41bdcd0479c0714d61e955b767c8fdeaCAS |

Smits, K., Govaere, J., Peelman, L. J., Goossens, K., de Graaf, D. C., Vercauteren, D., Vandaele, L., Hoogewijs, M., Wydooghe, E., Stout, T., and Van Soom, A. (2012). Influence of the uterine environment on the development of in vitro-produced equine embryos. Reproduction 143, 173–181.
Influence of the uterine environment on the development of in vitro-produced equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt7o%3D&md5=dfa060e779a5352311398a9bfefcaa59CAS |

Sommer, J. R., Estrada, J. L., Collins, E. B., Bedell, M., Alexander, C. A., Yang, Z., Hughes, G., Mir, B., Gilger, B. C., Grob, S., Wie, X., Piedrahita, J. A., Shaw, P. X., Petters, R. M., and Zhang, K. (2011). Production of ELOVL4 transgenic pigs: a large-animal model for Stargardt-like macular degeneration. Br. J. Ophthalmol. 95, 1749–1754.
Production of ELOVL4 transgenic pigs: a large-animal model for Stargardt-like macular degeneration.Crossref | GoogleScholarGoogle Scholar |

Sommer, J. R., Jackson, L. R., Simpson, S. G., Collins, E. B., Piedrahita, J. A., and Petters, R. M. (2012). Transgenic Stra8–EYFP pigs: a model for developing male germ-cell technologies. Transgenic Res. 21, 383–392.
Transgenic Stra8–EYFP pigs: a model for developing male germ-cell technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVKrtrc%3D&md5=9d6daec41ba9e46179bc38d047832f6fCAS |

Spencer, T. E., Johnson, G. A., Bazer, F. W., and Burghardt, R. C. (2004). Implantation mechanisms: insights from the sheep. Reproduction 128, 657–668.
Implantation mechanisms: insights from the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSlsw%3D%3D&md5=047c4239e2e49f42cabcae798c2d8b7aCAS |

Sritanaudomchai, H., Pavasuthipaisit, K., Kitiyanant, Y., Kupradinun, P., Mitalipov, S., and Kusamran, T. (2007). Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol. Reprod. Dev. 74, 1295–1302.
Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfK&md5=dd17170a3611eeb728f06d166173bc5cCAS |

Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science 322, 945–949.
Induced pluripotent stem cells generated without viral integration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaltLzN&md5=1f741a8b4312f76084f938cb93490a46CAS |

Stice, S. L., Strelchenko, N. S., Keefer, C. L., and Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110.
Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLvN&md5=30ab7fd92fc436d5c9750f790f6b982cCAS |

Stockwell, S., Herrid, M., Davey, R., Brownlee, A., Hutton, K., and Hill, J. R. (2009). Microsatellite detection of donor-derived sperm DNA following germ-cell transplantation in cattle. Reprod. Fertil. Dev. 21, 462–468.
Microsatellite detection of donor-derived sperm DNA following germ-cell transplantation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFems7c%3D&md5=b6e8226f786ec13cc72679688de05d5aCAS |

Stout, T. A., Meadows, S., and Allen, W. R. (2005). Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo. Anim. Reprod. Sci. 87, 269–281.
Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWitQ%3D%3D&md5=7540f61d7199d17a78753122390beba7CAS |

Strelchenko, N. (1996). Bovine pluripotent stem cells. Theriogenology 45, 131–140.
Bovine pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Strojek, R. M., Reed, M. A., Hoover, J. L., and Wagner, T. E. (1990). A method for cultivating morphologically-undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33, 901–913.
A method for cultivating morphologically-undifferentiated embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFGnuw%3D%3D&md5=ac31444fc775a874dcdb750eb8edb230CAS |

Sumer, H., Jones, K. L., Liu, J., Heffernan, C., Tat, P. A., Upton, K. R., and Verma, P. J. (2010a). Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev. 19, 239–246.
Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVaisL4%3D&md5=f789893815dd9b9e5253e99249153a13CAS |

Sumer, H., Nicholls, C., Liu, J., Tat, P. A., Liu, J. P., and Verma, P. J. (2010b). Comparison of reprogramming ability of mouse ES and iPS cells measured by somatic cell fusion. Int. J. Dev. Biol. 54, 1723–1728.
Comparison of reprogramming ability of mouse ES and iPS cells measured by somatic cell fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFClsbc%3D&md5=b2000dd8cf702ef18907fd5c98716ef0CAS |

Sumer, H., Liu, J., Malaver-Ortega, L. F., Lim, M. L., Khodadadi, K., and Verma, P. J. (2011). NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 89, 2708–2716.
NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWqtrjP&md5=e1997fe392a7c1049b6f8dd63ed94046CAS |

Suzuki, S., Iwamoto, M., Saito, Y., Fuchimoto, D., Sembon, S., Suzuki, M., Mikawa, S., Hashimoto, M., Aoki, Y., Najima, Y., Takagi, S., Suzuki, N., Suzuki, E., Kubo, M., Mimuro, J., Kashiwakura, Y., Madoiwa, S., Sakata, Y., Perry, A. C., Ishikawa, F., and Onishi, A. (2012). Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758.
Il2rg gene-targeted severe combined immunodeficiency pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFeqsbk%3D&md5=5d6058d831e847cd93a2e677e3d62c9eCAS |

Tabar, V., Tomishima, M., Panagiotakos, G., Wakayama, S., Menon, J., Chan, B., Mizutani, E., Al-Shamy, G., Ohta, H., Wakayama, T., and Studer, L. (2008). Therapeutic cloning in individual Parkinsonian mice. Nat. Med. 14, 379–381.
Therapeutic cloning in individual Parkinsonian mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktl2is7Y%3D&md5=c3550a954b5f05d6892e700e78a54facCAS |

Tada, M., Tada, T., Lefebvre, L., Barton, S. C., and Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.
Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslWkt7o%3D&md5=043fab2e48d084153393ac00d82e2b12CAS |

Tagelenbosch, R. A., and de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem-cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.
A quantitative study of spermatogonial multiplication and stem-cell renewal in the C3H/101 F1 hybrid mouse.Crossref | GoogleScholarGoogle Scholar |

Takada, T., Iida, K., Awaji, T., Itoh, K., Takahashi, R., Shibui, A., Yoshida, K., Sugano, S., and Tsujimoto, G. (1997). Selective production of transgenic mice using green fluorescent protein as a marker. Nat. Biotechnol. 15, 458–461.
Selective production of transgenic mice using green fluorescent protein as a marker.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVynsbc%3D&md5=e51e2f083da71a2ac962939c85b6b137CAS |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=838780014e82751756f085c478fc64faCAS |

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCntbbK&md5=7320777af6da378dd8a0f5130b364404CAS |

Talbot, N. C., and Blomberg, L. (2008). The pursuit of ESC lines of domesticated ungulates. Stem Cell Rev. 4, 235–254.
The pursuit of ESC lines of domesticated ungulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SqsbzN&md5=285e4e6f90c81701aadc1bae27b8e3c8CAS |

Talbot, N. C., Rexroad, C. E., Pursel, V. G., and Powell, A. M. (1993a). Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol. Reprod. Dev. 36, 139–147.
Alkaline phosphatase staining of pig and sheep epiblast cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVejsrY%3D&md5=84f59b1e45f1c870a10b4c83489c3b56CAS |

Talbot, N. C., Rexroad, C. E., Pursel, V. G., Powell, A. M., and Nel, N. D. (1993b). Culturing the epiblast cells of the pig blastocyst. In Vitro Cell. Dev. Biol. Anim. 29, 543–554.
Culturing the epiblast cells of the pig blastocyst.Crossref | GoogleScholarGoogle Scholar |

Talbot, N. C., Powell, A. M., and Rexroad, C. E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42, 35–52.
In vitro pluripotency of epiblasts derived from bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVGlu78%3D&md5=ece6e1d9c9960ae5adb62d2bdbad4509CAS |

Talbot, N. C., Powell, A. M., Camp, M., and Ealy, A. D. (2007). Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer or parthenogenetic activation. In Vitro Cell. Dev. Biol. Anim. 43, 59–71.
Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer or parthenogenetic activation.Crossref | GoogleScholarGoogle Scholar |

Tavernier, G., Wolfrum, K., Demeester, J., De Smedt, S. C., Adjaye, J., and Rejman, J. (2012). Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials 33, 412–417.
Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWkt7vN&md5=3c7a5fed4576acbbeca2004ea78255a8CAS |

Telugu, B. P., Ezashi, T., and Roberts, R. M. (2010a). The promise of stem-cell research in pigs and other ungulate species. Stem Cell Rev. 6, 31–41.
The promise of stem-cell research in pigs and other ungulate species.Crossref | GoogleScholarGoogle Scholar |

Telugu, B. P., Ezashi, T., and Roberts, R. M. (2010b). Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54, 1703–1711.
Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFClsbg%3D&md5=a29b05803632220bfd6ec9bc82958974CAS |

Telugu, B. P., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., and Roberts, R. M. (2011). Leukemia inhibitory factor (LIF)-dependent pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286, 28 948–28 953.
Leukemia inhibitory factor (LIF)-dependent pluripotent stem cells established from inner cell mass of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgsbrP&md5=cf39ed19c07d6b041633b5c31e29b1dcCAS |

Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995). Isolation of a primate embryonic stem-cell line. Proc. Natl. Acad. Sci. USA 92, 7844–7848.
Isolation of a primate embryonic stem-cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFOnt7w%3D&md5=b0d2c8ba2460b93b1187696fc71dcf08CAS |

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem-cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem-cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntleisLg%3D&md5=c4f74f8b4ff01c79a121f0d51f6911ffCAS |

Tu, J., Fan, L., Tao, K., Zhu, W., Li, J., and Lu, G. (2007). Stem-cell factor affects fate determination of human gonocytes in vitro. Reproduction 134, 757–765.
Stem-cell factor affects fate determination of human gonocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1ehsQ%3D%3D&md5=fbdafa133dffddbfee3a7809146a808fCAS |

Umeyama, K., Watanabe, M., Saito, H., Kurome, M., Tohi, S., Matsunari, H., Miki, K., and Nagashima, H. (2009). Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res. 18, 697–706.
Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWrsrbF&md5=c24cc3e2220d33140f4eee23ac6a8ac2CAS |

Vackova, I., and Madrova, J. (2006). Porcine embryonic stem-like cells, an animal model for human stem-cell therapy. Hum. Reprod. 21, 163.

Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., and Liebaers, I. (2008). The four blastomeres of a 4-cell-stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum. Reprod. 23, 1742–1747.
The four blastomeres of a 4-cell-stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm.Crossref | GoogleScholarGoogle Scholar |

van Dissel-Emiliani, F. M., de Rooij, D. G., and Meistrich, M. L. (1989). Isolation of rat gonocytes by velocity sedimentation at unit gravity. J. Reprod. Fertil. 86, 759–766.
Isolation of rat gonocytes by velocity sedimentation at unit gravity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1eltA%3D%3D&md5=3d9d2aa4d61365665a4243c838634d3dCAS |

van Dissel-Emiliani, F. M., de Boer-Brouwer, M., Spek, E. R., van der Donk, J. A., and de Rooij, D. G. (1993). Survival and proliferation of rat gonocytes in vitro. Cell Tissue Res. 273, 141–147.
Survival and proliferation of rat gonocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3szntlemtA%3D%3D&md5=d8ab1c5f5f3b0bb841607c18b7730252CAS |

Van Soom, A., Boerjan, M. L., Bols, P. E., Vanroose, G., Lein, A., Coryn, M., and de Kruif, A. (1997). Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod. 57, 1041–1049.
Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSns7o%3D&md5=6e6b0f1147eb82cc517d2cdf01bb338eCAS |

Van Stekelenburg-Hamers, A. E., Van Achterberg, T. A., Rebel, H. G., Fléchon, J. E., Campbell, K. H., Weima, S. M., and Mummery, C. L. (1995). Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Mol. Reprod. Dev. 40, 444–454.
Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvV2gsbo%3D&md5=e5b974f876ad05177e5b12f7a0fccb8eCAS |

Vasilkova, A. A., Kizilova, H. A., Puzakov, M. V., Shilov, A. G., Zhelezova, A. I., Golubitsa, A. N., Battulin, N. R., Vedernikov, V. E., Menzorov, A. G., Matveeva, N. M., and Serov, O. L. (2007). Dominant manifestation of pluripotency in embryonic stem-cell hybrids with various numbers of somatic chromosomes. Mol. Reprod. Dev. 74, 941–951.
Dominant manifestation of pluripotency in embryonic stem-cell hybrids with various numbers of somatic chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhur4%3D&md5=08282845f396e4735148bb281cc209c4CAS |

Vassiliev, I., Vassilieva, S., Beebe, L. F., Harrison, S. J., McIlfatrick, S. M., and Nottle, M. B. (2010a). In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram. 12, 223–230.
In vitro and in vivo characterization of putative porcine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVahtLk%3D&md5=52ef3cfc66de62f0f8d1ae38a08e294dCAS |

Vassiliev, I., Vassilieva, S., Beebe, L. F., McIlfatrick, S. M., Harrison, S. J., and Nottle, M. B. (2010b). Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro-produced and in vivo-derived embryos. J. Reprod. Dev. 56, 546–551.
Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro-produced and in vivo-derived embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyhurzN&md5=188ed6fc9dafd6d43ac8c17bc6c54901CAS |

Verma, V., Gautam, S. K., Singh, B., Manik, R. S., Palta, P., Singla, S. K., Goswami, S. L., and Chauhan, M. S. (2007). Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol. Reprod. Dev. 74, 520–529.
Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtbo%3D&md5=f4cac627f17e9cbb552f3c637d712bf6CAS |

Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsbs%3D&md5=547b7bd9ea75b22c6c531ebbb3a7f771CAS |

Wakayama, T., Tabar, V., Rodriguez, I., Perry, A. C., Studer, L., and Mombaerts, P. (2001). Differentiation of embryonic stem-cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743.
Differentiation of embryonic stem-cell lines generated from adult somatic cells by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1ekur4%3D&md5=a3612c5033eaac452ea817909a2c3714CAS |

Wakayama, S., Ohta, H., Kishigami, S., Thuan, N. V., Hikichi, T., Mizutani, E., Miyake, M., and Wakayama, T. (2005). Establishment of male and female nuclear transfer embryonic stem-cell lines from different mouse strains and tissues. Biol. Reprod. 72, 932–936.
Establishment of male and female nuclear transfer embryonic stem-cell lines from different mouse strains and tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12hsL4%3D&md5=59a317e670fc0d4690e35372050722b6CAS |

Wakayama, S., Jakt, M. L., Suzuki, M., Araki, R., Hikichi, T., Kishigami, S., Ohta, H., Van Thuan, N., Mizutani, E., Sakaide, Y., Senda, S., Tanaka, S., Okada, M., Miyake, M., Abe, M., Nishikawa, S., Shiota, K., and Wakayama, T. (2006). Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24, 2023–2033.
Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKgs7%2FN&md5=40d27855cc891ebeeea8af4875923eedCAS |

Wang, L., Duan, E., Sung, L. Y., Jeong, B. S., Yang, X., and Tian, X. C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73, 149–155.
Generation and characterization of pluripotent stem cells from cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srt7Y%3D&md5=b2f10824e94baefec90ed4d1d15b4a0eCAS |

Wang, Y., Zheng, C. G., Jiang, Y., Zhang, J., Chen, J., Yao, C., Zhao, Q., Liu, S., Chen, K., Du, J., Yang, Z., and Gao, S. (2012). Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving haemoglobin production in irradiated SCID mice. Cell Res. 22, 637–648.
Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving haemoglobin production in irradiated SCID mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFynsbk%3D&md5=36ce8ce96a49ae665655e6922e6b2ef4CAS |

Wani, N. A., Wernery, U., Hassan, F. A. H., Wernery, R., and Skidmore, J. A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod. 82, 373–379.
Production of the first cloned camel by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsbw%3D&md5=b46b36cd323d3aca4c99c08a6defa3deCAS |

Webster, N. L., Forni, M., Bacci, M. L., Giovannoni, R., Razzini, R., Fantinati, P., Zannoni, A., Fusetti, L., Dalpra, L., Bianco, M. R., Papa, M., Seren, E., Sandrin, M. S., Mc Kenzie, I. F., and Lavitrano, M. (2005). Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm-mediated gene transfer. Mol. Reprod. Dev. 72, 68–76.
Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm-mediated gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlCls7c%3D&md5=0c254b2ba28da412e8b4c81d3c609b0aCAS |

Wei, J., Ouyang, H., Wang, Y., Pang, D., Cong, N. X., Wang, T., Leng, B., Li, D., Li, X., Wu, R., Ding, Y., Gao, F., Deng, Y., Liu, B., Li, Z., Lai, L., Feng, H., Liu, G., and Deng, X. (2012). Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J. 279, 91–99.
Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Snuw%3D%3D&md5=0a26e7fd870917523cd21494336005fbCAS |

West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19, 1211–1220.
Porcine induced pluripotent stem cells produce chimeric offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVejs77O&md5=318a33d835767ded18d04b7ed97e4484CAS |

West, F. D., Uhl, E. W., Liu, Y., Stowe, H., Lu, Y., Yu, P., Gallegos-Cardenas, A., Pratt, S. L., and Stice, S. L. (2011). Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumour formation in young pigs. Stem Cells 29, 1640–1643.
Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumour formation in young pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itbzE&md5=a513af006c3a67d8437bdc04c51ebb0fCAS |

Wheeler, M. B. (1994). Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev. 6, 563–568.
Development and validation of swine embryonic stem cells: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FlvVSksA%3D%3D&md5=e8091ed146c4a0c4c376967e1f865308CAS |

Wianny, F., Perreau, C., and Hochereau de Reviers, M. T. (1997). Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biol. Reprod. 57, 756–764.
Proliferation and differentiation of porcine inner cell mass and epiblast in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGjtro%3D&md5=2d4ce7af25f4e65c542a52a2245e966dCAS |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=39ec17367ce300e2ebcb9f1ddbeed6c9CAS |

Winkler, T., Cantilena, A., Métais, J. Y., Xu, X., Nguyen, A. D., Borate, B., Antosiewicz-Bourget, J. E., Wolfsberg, T. G., Thomson, J. A., and Dunbar, C. E. (2010). No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 28, 687–694.
No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1yis7k%3D&md5=df94b8180b3842ae62c0fef12c45d496CAS |

Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., and Nagy, A. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770.
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVOrtr0%3D&md5=7c590f8893122d8eeddc40d38a33c80fCAS |

Woods, G. L., White, K. L., Vanderwall, D. K., Li, G. P., Aston, K. I., Bunch, T. D., Meerdo, L. N., and Pate, B. J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
A mule cloned from fetal cells by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1KhurY%3D&md5=6f23b4b3c87634a9f96a55fb70379d8dCAS |

Wrobel, K. H., and Süss, F. (1998). Identification and temporo-spatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anat. Embryol. (Berl.) 197, 451–467.
Identification and temporo-spatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czks1GjtA%3D%3D&md5=087171d39655d141a90a3aa614d630beCAS |

Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L., and Xiao, L. (2009a). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell. Biol. 1, 46–54.
Generation of pig induced pluripotent stem cells with a drug-inducible system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSisbo%3D&md5=4cfb9ed8e8ee33ef1ed87719f515efbfCAS |

Wu, Z., Falciatori, I., Molyneux, L. A., Richardson, T. E., Chapman, K. M., and Hamra, F. K. (2009b). Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81, 77–86.
Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaru7c%3D&md5=790dcf28a19e767fe59a423799981d45CAS |

Wu, G., Liu, N., Rittelmeyer, I., Sharma, A. D., Sgodda, M., Zaehres, H., Bleidissel, M., Greber, B., Gentile, L., Han, D. W., Rudolph, C., Steinemann, D., Schambach, A., Ott, M., Schöler, H. R., and Cantz, T. (2011). Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol. 9, e1001099.
Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVGjuro%3D&md5=d8a5f736e2c3efc5e8dbdd66611a1961CAS |

Wuensch, A., Habermann, F. A., Kurosaka, S., Klose, R., Zakhartchenko, V., Reichenbach, H. D., Sinowatz, F., McLaughlin, K. J., and Wolf, E. (2007). Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle. Biol. Reprod. 76, 983–991.
Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFGms74%3D&md5=8712005dcaccb398687a77b4e076ecb0CAS |

Xie, B., Qin, Z., Huang, B., Xie, T., Yao, H., Wei, Y., Yang, X., Shi, D., and Jiang, H. (2010). In vitro culture and differentiation of buffalo (Bubalus bubalis) spermatogonia. Reprod. Domest. Anim. 45, 275–282.
In vitro culture and differentiation of buffalo (Bubalus bubalis) spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2htLY%3D&md5=d96fbc005da5e28e4d8f0404363a8c15CAS |

Yadav, P. S., Kues, W. A., Herrmann, D., Carnwath, J. W., and Niemann, H. (2005). Bovine ICM-derived cells express the Oct4 ortholog. Mol. Reprod. Dev. 72, 182–190.
Bovine ICM-derived cells express the Oct4 ortholog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1ygu7k%3D&md5=f5c1b04a1d1931abbf0ffbac253ab29fCAS |

Yang, Y., and Honaramooz, A. (2011). Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod. Fertil. Dev. 23, 496–505.
Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12nt7Y%3D&md5=278656432188c61798b004a58cdbeb22CAS |

Yang, X., and Smith, S. L. (2007). ESCs derived from cloned embryos in monkey – a jump toward human therapeutic cloning. Cell Res. 17, 969–970.
ESCs derived from cloned embryos in monkey – a jump toward human therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaisrjE&md5=c61bec9cffd28cba7b99f06fd9e62720CAS |

Yang, W., Ge, X., Hua, J., Shen, W., and Dou, Z. (2006). Improved isolation and culture of embryonic germ cells from Guanzhong dairy goat. Agric. Sci. China 5, 550–557.
Improved isolation and culture of embryonic germ cells from Guanzhong dairy goat.Crossref | GoogleScholarGoogle Scholar |

Yang, Y., Yarahmadi, M., and Honaramooz, A. (2010). Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes. Reprod. Fertil. Dev. 22, 1057–1065.
Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOgu7rE&md5=09357894c716c3162e13ce4a50d0a330CAS |

Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., and Scholer, H. R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894.
| 1:CAS:528:DyaK28XhvVOrtbs%3D&md5=657fa65b913d51ed2df3caa54948ac82CAS |

Yoshimizu, T., Sugiyama, N., De Felice, M., Yeom, Y. I., Ohbo, K., Masuko, K., Obinata, M., Abe, K., Scholer, H. R., and Matsui, Y. (1999). Germline-specific expression of the Oct-4–green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684.
Germline-specific expression of the Oct-4–green fluorescent protein (GFP) transgene in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFyntg%3D%3D&md5=e549f179498afd6ea310516f451db40aCAS |

Yu, J., Vodyanik, M. A., He, P., Slukvin, I. I., and Thomson, J. A. (2006). Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24, 168–176.
Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion.Crossref | GoogleScholarGoogle Scholar |

Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801.
Human induced pluripotent stem cells free of vector and transgene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVeksrk%3D&md5=b10e7f9e2c4530536ada22f4d19af03dCAS |

Zeng, W., Tang, L., Bondareva, A., Luo, J., Megee, S. O., Modelski, M., Blash, S., Melican, D. T., Destrempes, M. M., Overton, S. A., Gavin, W. G., Ayres, S., Echelard, Y., and Dobrinski, I. (2012). Non-viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ-cell transplantation. Mol. Reprod. Dev. 79, 255–261.
Non-viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOrug%3D%3D&md5=6ac08e93b634e90d3546fbc44bc4a7e7CAS |

Zhao, Y., Lin, J., Wang, L., Chen, B., Zhou, C., Chen, T., Guo, M., He, S., Zhang, N., Liu, C., Liu, M., and Huang, J. (2011). Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J. Exp. Zool. A Ecol. Genet. Physiol. 315A, 639–648.
Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells.Crossref | GoogleScholarGoogle Scholar |

Zhou, Q., Renard, J. P., Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A., and Cozzi, J. (2003). Generation of fertile cloned rats using controlled timing of oocyte activation. Science 302, 1179.
Generation of fertile cloned rats using controlled timing of oocyte activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlehur8%3D&md5=bbabb2fea829167ea5deb91b0ed72fc1CAS |

Zhou, Q., Nie, R., Li, Y., Friel, P., Mitchell, D., Hess, R. A., Small, C., and Griswold, M. D. (2008). Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol. Reprod. 79, 35–42.
Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFWnsb8%3D&md5=05c13686dfa9538e40d7f317d23e7685CAS |

Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Schöler, H. R., Duan, L., and Ding, S. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384.
Generation of induced pluripotent stem cells using recombinant proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGjtLw%3D&md5=68d6677a7d4eb2151becd6cf633a1e6aCAS |

Zhou, L., Wang, W., Liu, Y., Fernandez de Castro, J., Ezashi, T., Telugu, B. P., Roberts, R. M., Kaplan, H. J., and Dean, D. C. (2011). Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29, 972–980.
Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Onu7w%3D&md5=d7efbf39ec5b0ebce1fb4006c734d497CAS |

Zhu, S. X., Sun, Z., and Zhang, J. P. (2007). Ovine (Ovis aries) blastula from an in vitro-production system and isolation of primary embryonic stem cells. Zygote 15, 35–41.
Ovine (Ovis aries) blastula from an in vitro-production system and isolation of primary embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Zhu, H., Liu, C., Sun, J., Li, M., and Hua, J. (2012). Effect of GSK-3 inhibitor on the proliferation of multipotent male germline stem cells (mGSCs) derived from goat testis. Theriogenology 77, 1939–1950.
Effect of GSK-3 inhibitor on the proliferation of multipotent male germline stem cells (mGSCs) derived from goat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFehsLg%3D&md5=e3913787a41007033f5d56e2a6a31fe3CAS |