Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines

Vanessa Jane Hall
+ Author Affiliations
- Author Affiliations

University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, Gronnegaardsvej 7, DK-1870 Frederiksberg C, Denmark. Email: vh@sund.ku.dk

Reproduction, Fertility and Development 25(1) 94-102 https://doi.org/10.1071/RD12264
Published: 4 December 2012

Abstract

Understanding the cell signalling events that govern cell renewal in porcine pluripotent cells may help improve culture conditions and allow for establishment of bona fide porcine embryonic stem cells (pESC) and stable porcine induced pluripotent stem cells (piPSC). This review investigates cell signalling in the porcine preimplantation embryo containing either the inner cell mass or epiblast, with particular emphasis on fibroblast growth factor, SMAD, WNT and Janus tyrosine kinases/signal transducers and activators of transcription signalling. It is clear that key differences exist in the cell signalling events that govern pluripotency in this species compared with similar embryonic stages in mouse and human. The fact that bona fide pESC have still not been produced and that piPSC cannot survive in culture following the silencing or downregulation of the reprogramming transgenes suggest that culture conditions are not optimal. Unravelling the factor/s that regulate pluripotency in porcine embryos will pave the way for future establishment of stable pluripotent stem cell lines.

Additional keywords: cell signalling, embryo, FGF pathway, JAK/STAT pathway, pluripotent stem cells, porcine, preimplantation, SMAD pathway, WNT pathway.


References

Alberio, R., Croxall, N., and Allegrucci, C. (2010). Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19, 1627–1636.
Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmu7vE&md5=b667ac7fa4d98e0c2e1b96342e4b3f69CAS |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt74%3D&md5=3f04ff44a2f567a143cba96c4e2615caCAS |

Bernemann, C., Greber, B., Ko, K., Sterneckert, J., Han, D. W., Arauzo-Bravo, M. J., and Scholer, H. R. (2011). Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features. Stem Cells 29, 1496–1503.
Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itLfE&md5=8947e6097ea2500bf1839b2ac0208e67CAS |

Bode, G., Clausing, P., Gervais, F., Loegsted, J., Luft, J., Nogues, V., and Sims, J. (2010). The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 62, 196–220.
The utility of the minipig as an animal model in regulatory toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GjtrjN&md5=5e815c27fb05aa59ec776d568ad2aecbCAS |

Bourque, G., Leong, B., Vega, V. B., Chen, X., Lee, Y. L., Srinivasan, K. G., Chew, J. L., Ruan, Y., Wei, C. L., Ng, H. H., and Liu, E. T. (2008). Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762.
Evolution of the mammalian transcription factor binding repertoire via transposable elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKhsr3O&md5=01d950ac2e90e2ed2041bb9744e7bb28CAS |

Brevini, T. A., Antonini, S., Cillo, F., Crestan, M., and Gandolfi, F. (2007a). Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology 68, S206–S213.
Porcine embryonic stem cells: facts, challenges and hopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitb0%3D&md5=c78420ba77380c0b21d4e9db8f3ffcd1CAS |

Brevini, T. A., Tosetti, V., Crestan, M., Antonini, S., and Gandolfi, F. (2007b). Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 67, 54–63.
Derivation and characterization of pluripotent cell lines from pig embryos of different origins.Crossref | GoogleScholarGoogle Scholar |

Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.
Derivation of pluripotent epiblast stem cells from mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFeisbw%3D&md5=de35c79eddc00b2dc488b1c47065359cCAS |

Cauffman, G., Liebaers, I., Van Steirteghem, A., and Van de Velde, H. (2006). POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24, 2685–2691.
POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCluw%3D%3D&md5=6abcca79737242202c5d4d18d82552c4CAS |

Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234.
Nanog safeguards pluripotency and mediates germline development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsL7K&md5=001aae24e0f8100ec9cb8541d2ecec5cCAS |

Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117.
Integration of external signaling pathways with the core transcriptional network in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsF2gurw%3D&md5=1f9ded2b2654db302d5a6c4ee98bf225CAS |

Clark, K. J., Carlson, D. F., and Fahrenkrug, S. C. (2007). Pigs taking wing with transposons and recombinases. Genome Biol. 8, S13–S13.16.
Pigs taking wing with transposons and recombinases.Crossref | GoogleScholarGoogle Scholar |

Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., and Young, R. A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755.
Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFeqsrc%3D&md5=221e9da0765ed0a63ae4e79c2a5309a1CAS |

Dang-Nguyen, T. Q., Somfai, T., Haraguchi, S., Kikuchi, K., Tajima, A., Kanai, Y., and Nagai, T. (2011). In vitro production of porcine embryos: current status, future perspectives and alternative applications. Anim. Sci. J. 82, 374–382.

Dejosez, M., Levine, S. S., Frampton, G. M., Whyte, W. A., Stratton, S. A., Barton, M. C., Gunaratne, P. H., Young, R. A., and Zwaka, T. P. (2010). Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24, 1479–1484.
Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslygu7o%3D&md5=70aa85c52f91398ce6016be0a76d5ab0CAS |

Ding, V. M., Ling, L., Natarajan, S., Yap, M. G., Cool, S. M., and Choo, A. B. (2010). FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J. Cell. Physiol. 225, 417–428.
FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyhu7jJ&md5=0a10b11a59ba70adf5c3eb5dc95f6340CAS |

du Puy, L., Lopes, S. M., Haagsman, H. P., and Roelen, B. A. (2011). Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75, 513–526.
Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kmsw%3D%3D&md5=9ff79fde3668581b1df255743bc8d99eCAS |

Eiselleova, L., Matulka, K., Kriz, V., Kunova, M., Schmidtova, Z., Neradil, J., Tichy, B., Dvorakova, D., Pospisilova, S., Hampl, A., and Dvorak, P. (2009). A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27, 1847–1857.
A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ajsr%2FO&md5=9a9fe900baac972030c3e74522e8559fCAS |

Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., Cai, J., Lai, L., and Pei, D. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284, 17 634–17 640.
Generation of induced pluripotent stem cell lines from Tibetan miniature pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWks7g%3D&md5=6264d0903ea082f739ccfa30037a8163CAS |

Esteban, M. A., Peng, M., Deli, Z., Cai, J., Yang, J., Xu, J., Lai, L., and Pei, D. (2010). Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62, 277–282.
| 1:CAS:528:DC%2BC3cXktVCkt7s%3D&md5=e9de489a07dc47f363bb2b172a86acd7CAS |

Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., and Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10 993–10 998.
Derivation of induced pluripotent stem cells from pig somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSnur0%3D&md5=682ff04db0d6533f6bda5e610e816c37CAS |

Fahrenkrug, S. C., Blake, A., Carlson, D. F., Doran, T., Van Eenennaam, A., Faber, D., Galli, C., Gao, Q., Hackett, P. B., Li, N., et al. (2010). Precision genetics for complex objectives in animal agriculture. J. Anim. Sci. 88, 2530–2539.
Precision genetics for complex objectives in animal agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Kmt70%3D&md5=8acab5cb48f71962c2973361bdf8107dCAS |

Gao, Y., Hyttel, P., and Hall, V. J. (2010). Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development. Mol. Reprod. Dev. 77, 540–549.
Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1agt7k%3D&md5=7ca9038254a1311c3fbd96094cbccc54CAS |

Gao, Y., Hyttel, P., and Hall, V. J. (2011a). Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification. Cell. Reprogram. 13, 345–360.
Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqurzJ&md5=77220b8a2c1b2598ff7cf12d02536748CAS |

Gao, Y., Jammes, H., Rasmussen, M.A., Oestrup, O., Beaujean, N., Hall, V., and Hyttel, P. (2011b). Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 6, 1149–1161.
| 1:CAS:528:DC%2BC38XitlGks74%3D&md5=edb6c156318e92884cc0bb1950998461CAS |

Garrels, W., Ivics, Z., and Kues, W. A. (2012). Precision genetic engineering in large mammals. Trends Biotechnol. 30, 386–393.
Precision genetic engineering in large mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyktr4%3D&md5=d677f92e2933e0db00802ddd6c497332CAS |

Gil, M. A., Cuello, C., Parrilla, I., Vazquez, J. M., Roca, J., and Martinez, E. A. (2010). Advances in swine in vitro embryo production technologies. Reprod. Domest. Anim. 45, 40–48.
Advances in swine in vitro embryo production technologies.Crossref | GoogleScholarGoogle Scholar |

Greber, B., Wu, G., Bernemann, C., Joo, J. Y., Han, D. W., Ko, K., Tapia, N., Sabour, D., Sterneckert, J., Tesar, P., and Schöler, H. R. (2010). Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6, 215–226.
Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1KmsrY%3D&md5=15f28b71f226ab2bef54371923ffcda8CAS |

Gu, Q., Hao, J., Zhao, X.Y., Li, W., Liu, L., Wang, L., Liu, Z. H., and Zhou, Q. (2012). Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions. Protein Cell 3, 71–79.
Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions.Crossref | GoogleScholarGoogle Scholar |

Hall, V. (2008). Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Rev. 4, 275–282.
Porcine embryonic stem cells: a possible source for cell replacement therapy.Crossref | GoogleScholarGoogle Scholar |

Hall, V. J., Christensen, J., Gao, Y., Schmidt, M. H., and Hyttel, P. (2009). Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev. Dyn. 238, 2014–2024.
Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKrsbbO&md5=cba1ce4710a5427e5a6283b8ddb1b882CAS |

Hall, V. J., Jacobsen, J. V., Rasmussen, M. A., and Hyttel, P. (2010). Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Dev. Dyn. 239, 2911–2920.
Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyqurrP&md5=ea745afb9b26aa2b10cf5baa22217251CAS |

Hall, V. J., Kristensen, M., Rasmussen, M. A., Ujhelly, O., Dinnyes, A., and Hyttel, P. (2012). Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell. Reprogram. 14, 204–216.
| 1:CAS:528:DC%2BC38XotlCgtb0%3D&md5=7955e6de883199c3427871a997d0af73CAS |

Han, D. W., Tapia, N., Joo, J. Y., Greber, B., Arauzo-Bravo, M. J., Bernemann, C., Ko, K., Wu, G., Stehling, M., Do, J. T., and Schöler, H. R. (2010). Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143, 617–627.
Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbvJ&md5=d27676fc2f0182127fcc70f875d66ed6CAS |

Hao, J., Li, T. G., Qi, X., Zhao, D. F., and Zhao, G. Q. (2006). WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 290, 81–91.
WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsV2gsw%3D%3D&md5=277fabb5511ec0fd718adb443442fa34CAS |

Harvey, A. J., Armant, D. R., Bavister, B. D., Nichols, S. M., and Brenner, C. A. (2009). Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts. Stem Cells Dev. 18, 1451–1458.
Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWitg%3D%3D&md5=e9b99ff84dff35b924906e69d9f98871CAS |

Hayashi, K., Lopes, S. M., Tang, F., and Surani, M. A. (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401.
Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12it7bJ&md5=00cd044e546b57c5749aed437c68cbbcCAS |

Henderson, J. K., Draper, J. S., Baillie, H. S., Fishel, S., Thomson, J. A., Moore, H., and Andrews, P. W. (2002). Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329–337.
Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Siurk%3D&md5=1436eb612b07e94abe7207779a718a50CAS |

Hirai, H., Karian, P., and Kikyo, N. (2011). Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem. J. 438, 11–23.
Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVajs7c%3D&md5=914f62845eea54bd74c0ac4855116b8aCAS |

Jacobs, A. (2006). Use of nontraditional animals for evaluation of pharmaceutical products. Expert Opin. Drug Metab. Toxicol. 2, 345–349.
Use of nontraditional animals for evaluation of pharmaceutical products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOgs7w%3D&md5=6cab996d9b358961302346901c1c99b6CAS |

Kang, H. B., Kim, J. S., Kwon, H. J., Nam, K. H., Youn, H. S., Sok, D. E., and Lee, Y. (2005). Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev. 14, 395–401.
Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslaisLY%3D&md5=f8ea469d875d63f3f8b4833740743ad6CAS |

Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061.
An extended transcriptional network for pluripotency of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1WqsLg%3D&md5=fe837022159baef9bccc153f74fcb8c7CAS |

Kim, J., Efe, J. A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S. A., Zhang, K., and Ding, S. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Natl Acad. Sci. USA 108, 7838–7843.
Direct reprogramming of mouse fibroblasts to neural progenitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVSktLs%3D&md5=68e3247a2db0326099cb93cfd7e06a6cCAS |

Klymiuk, N., Mundhenk, L., Kraehe, K., Wuensch, A., Plog, S., Emrich, D., Langenmayer, M. C., Stehr, M., Holzinger, A., Kröner, C., et al. (2012). Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med. 90, 597–608.
Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12qurc%3D&md5=5ac5a0c9c6aba9357bdb4ef5af139e7aCAS |

Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723–732.
| 1:CAS:528:DyaK1MXhvFamsLc%3D&md5=03416330b040b9010751d25cf1790e39CAS |

Kragh, P. M., Nielsen, A. L., Li, J., Du, Y., Lin, L., Schmidt, M., Bogh, I. B., Holm, I. E., Jakobsen, J. E., Johansen, M. G., Purup, S., Bolund, L., Vajta, G., and Jørgensen, A. L. (2009). Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558.
Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFKisLs%3D&md5=12db3ef4a23d8c5c9d0172481766e93cCAS |

Kuijk, E. W., Du Puy, L., Van Tol, H. T., Oei, C. H., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. (2008). Differences in early lineage segregation between mammals. Dev. Dyn. 237, 918–927.
Differences in early lineage segregation between mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFaktbY%3D&md5=a85496b3a9b5fea7f7dd9306496ad9dbCAS |

Kunarso, G., Chia, N. Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y. S., Ng, H. H., and Bourque, G. (2010). Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634.
Transposable elements have rewired the core regulatory network of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVSrsb4%3D&md5=036fe1a9b08c4184da09515c25799926CAS |

Lermen, D., Gorjup, E., Dyce, P. W., von Briesen, H., and Muller, P. (2010). Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells. PLoS One 5, e8968.
Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells.Crossref | GoogleScholarGoogle Scholar |

Liard, O., Segura, S., Pascual, A., Gaudreau, P., Fusai, T., and Moyse, E. (2009). In vitro isolation of neural precursor cells from the adult pig subventricular zone. J. Neurosci. Methods 182, 172–179.
In vitro isolation of neural precursor cells from the adult pig subventricular zone.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Ostrup, O., Li, J., Vajta, G., Lin, L., Kragh, P. M., Purup, S., Hyttel, P., and Callesen, H. (2012). Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin. Zygote 20, 61–66.
Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin.Crossref | GoogleScholarGoogle Scholar |

Luo, Y., Lin, L., Bolund, L., Jensen, T. G., and Sorensen, C. B. (2012). Genetically modified pigs for biomedical research. J. Inherit. Metab. Dis. 35, 695–713.
Genetically modified pigs for biomedical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVyrsrc%3D&md5=197cf3d8c74201a4aec8b4161aad606dCAS |

Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S. L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63.
| 1:CAS:528:DC%2BC38XpvVSmsb4%3D&md5=512414216f0b17736b4b43d2053f607bCAS |

Maherali, N., and Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605.
Guidelines and techniques for the generation of induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCqsLjP&md5=c1074bf9cbaed5e1685c0b2e36007dcdCAS |

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A. A., Ko, M .S. H., and Niwa, H. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.
Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSmtLo%3D&md5=4e1b0ba95207b1f5881ce4f0bff288deCAS |

McAnulty, P. A., Dayan, A. D., Ganderup, N.-C., and Hastings, K. L. (2011). ‘The Minipig in Biomedical Research.’ (CRC Press: London.)

Miernik, K., and Karasinski, J. (2012). Porcine uterus contains a population of mesenchymal stem cells. Reproduction 143, 203–209.
Porcine uterus contains a population of mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt7k%3D&md5=5a6023cb1df52d7437fc2ee90f434101CAS |

Monaco, E., Bionaz, M., Hollister, S. J., and Wheeler, M. B. (2011). Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. Theriogenology 75, 1381–1399.
Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvgslKjtg%3D%3D&md5=cfebead740dec934af1e0c780039c5a3CAS |

Montserrat, N., de Onate, L., Garreta, E., Gonzalez, F., Adamo, A., Eguizabal, C., Hafner, S., Vassena, R., and Belmonte, J. C. (2011). Generation of feeder free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. , .

Moore, K., and Piedrahita, J. A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell. Dev. Biol. Anim. 33, 62–71.
The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFCnu7o%3D&md5=f8a1ab0bc8fd772b1a5410aac3948cacCAS |

Muñoz, M., Trigal, B., Molina, I., Díez, C., Caamaño, J. N., and Gómez, E. (2009). Constraints to progress in embryonic stem cells from domestic species. Stem Cell Rev. 5, 6–9.
Constraints to progress in embryonic stem cells from domestic species.Crossref | GoogleScholarGoogle Scholar |

Ng, H. H., and Surani, M. A. (2011). The transcriptional and signalling networks of pluripotency. Nat. Cell Biol. 13, 490–496.
The transcriptional and signalling networks of pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFGlsrs%3D&md5=98dc81e313436ea0cd8a47391ffabccaCAS |

Nguyen, N. T., Lo, N. W., Chuang, S. P., Jian, Y. L., and Ju, J. C. (2011). Sonic hedgehog supplementation of oocyte and embryo culture media enhances development of IVF porcine embryos. Reproduction 142, 87–97.
Sonic hedgehog supplementation of oocyte and embryo culture media enhances development of IVF porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqu7zO&md5=cbe48491ae6b6db2dcfd5f7d7d5b4832CAS |

Niwa, H., Miyazaki, J., and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.
Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVCjsbo%3D&md5=d9aa86d8a3f7714b2c8ffe1f1913a84cCAS |

O’Leary, T., Heindryckx, B., Lierman, S., van Bruggen, D., Goeman, J. J., Vandewoestyne, M., Deforce, D., de Sousa Lopes, S. M., and De Sutter, P. (2012). Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat. Biotechnol. 30, 278–282.
Tracking the progression of the human inner cell mass during embryonic stem cell derivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2ls7Y%3D&md5=089af7e23ea47f7792a070e2b7ffa104CAS |

Oestrup, O., Hall, V., Petkov, S. G., Wolf, X. A., Hyldig, S., and Hyttel, P. (2009). From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod. Domest. Amin. 44, 39–49.
From zygote to implantation: morphological and molecular dynamics during embryo development in the pig.Crossref | GoogleScholarGoogle Scholar |

Petkov, S. G., Marks, H., Klein, T., Garcia, R. S., Gao, Y., Stunnenberg, H., and Hyttel, P. (2011). In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation. Stem Cell Res. 6, 226–237.
In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20–24 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFyjtLg%3D&md5=c7d5e7cbc6f9c2ee6678e73df3ffa989CAS |

Price, E. M., Prather, R. S., and Foley, C. M. (2006). Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine. Stem Cells Dev. 15, 507–522.
Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine.Crossref | GoogleScholarGoogle Scholar |

Puy, L., Chuva de Sousa Lopes, S. M., Haagsman, H. P., and Roelen, B. A. (2010). Differentiation of porcine inner cell mass cells into proliferating neural cells. Stem Cells Dev. 19, 61–70.
Differentiation of porcine inner cell mass cells into proliferating neural cells.Crossref | GoogleScholarGoogle Scholar |

Rasmussen, M. A., Hall, V. J., Carter, T. F., and Hyttel, P. (2011). Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia. Stem Cell Res. 7, 124–136.
Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFOgs7c%3D&md5=3ce6be5515dcf34de90b7bd895afa7a5CAS |

Renner, S., Fehlings, C., Herbach, N., Hofmann, A., von Waldthausen, D. C., Kessler, B., Ulrichs, K., Chodnevskaja, I., Moskalenko, V., Amselgruber, W., Göke, B., Pfeifer, A., Wanke, R., and Wolf, E. (2010). Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238.
Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFegtrw%3D&md5=70e39848f717fc176f3fb183939b24f0CAS |

Rho, G. J., Kumar, B. M., and Balasubramanian, S. S. (2009). Porcine mesenchymal stem cells: current technological status and future perspective. Front. Biosci. 14, 3942–3961.
Porcine mesenchymal stem cells: current technological status and future perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlWku78%3D&md5=a88be35981424f86207dad91adc70554CAS |

Roberts, R. M., Telugu, B. P., and Ezashi, T. (2009). Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important. Cell Cycle 8, 3078–3081.
Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslKnu7c%3D&md5=c1f8b289b7af2999e7075943d5e94aefCAS |

Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., Ostedgaard, L. S., Rokhlina, T., Taft, P. J., Rogan, M. P., Pezzulo, A. A., Karp, P. H., Itani, O. A., et al. (2008). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841.
Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCrtLrP&md5=8cb63018bac1d278f65e6b5b3d32b570CAS |

Rugg-Gunn, P. J., Cox, B. J., Lanner, F., Sharma, P., Ignatchenko, V., McDonald, A. C., Garner, J., Gramolini, A. O., Rossant, J., and Kislinger, T. (2012). Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev. Cell 22, 887–901.
Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFGisrs%3D&md5=4ea13b12d5ada0c056bc17bbfc0a6187CAS |

Saxe, J. P., Tomilin, A., Scholer, H. R., Plath, K., and Huang, J. (2009). Post-translational regulation of Oct4 transcriptional activity. PLoS One 4, e4467.
Post-translational regulation of Oct4 transcriptional activity.Crossref | GoogleScholarGoogle Scholar |

Spitzer, N., Sammons, G. S., Butts, H. M., Grover, L. M., and Price, E. M. (2011). Multipotent progenitor cells derived from adult peripheral blood of swine have high neurogenic potential in vitro. J. Cell. Physiol. 226, 3156–3168.
Multipotent progenitor cells derived from adult peripheral blood of swine have high neurogenic potential in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sqtb%2FK&md5=cd10c0cf5ac8410a5899a44a59e3fce4CAS |

Staunstrup, N. H., Madsen, J., Primo, M. N., Li, J., Liu, Y., Kragh, P. M., Li, R., Schmidt, M., Purup, S., Dagnaes-Hansen, F., Svensson, L., Petersen, T. K., Callesen, H., Bolund, L., and Mikkelsen, J. G. (2012). Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS One 7, e36658.
Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Ghu74%3D&md5=22e3c1c713738c3abf09e9151284025fCAS |

Strumpf, D., Mao, C. A., Yamanaka, Y., Ralston, A., Chawengsaksophak, K., Beck, F., and Rossant, J. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102.
Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFagsbs%3D&md5=888083ff7c8829357efb5b944f1fb618CAS |

Suzuki, S., Iwamoto, M., Saito, Y., Fuchimoto, D., Sembon, S., Suzuki, M., Mikawa, S., Hashimoto, M., Aoki, Y., Najima, Y., et al. (2012). Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758.
Il2rg gene-targeted severe combined immunodeficiency pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFeqsbk%3D&md5=5d6058d831e847cd93a2e677e3d62c9eCAS |

Tareq, K. M., Akter, Q. S., Khandoker, M. A., and Tsujii, H. (2012). Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev. , .
Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes.Crossref | GoogleScholarGoogle Scholar |

Telugu, B. P., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., and Roberts, R. M. (2011). Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286, 28 948–28 953.
Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgsbrP&md5=cf39ed19c07d6b041633b5c31e29b1dcCAS |

ten Berge, D., Kurek, D., Blauwkamp, T., Koole, W., Maas, A., Eroglu, E., Siu, R. K., and Nusse, R. (2011). Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 13, 1070–1075.
Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWls77N&md5=453347f34e713ca516bb8d8db4b79f5dCAS |

Uebing-Czipura, A. U., Dawson, H. D., and Scherba, G. (2008). Immortalization and characterization of lineage-restricted neuronal progenitor cells derived from the porcine olfactory bulb. J. Neurosci. Methods 170, 262–276.
Immortalization and characterization of lineage-restricted neuronal progenitor cells derived from the porcine olfactory bulb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVyhsr4%3D&md5=bbdb236e1f79be5531e19ab9c4a337e1CAS |

Vejlsted, M., Offenberg, H., Thorup, F., and Maddox-Hyttel, P. (2006). Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation. Mol. Reprod. Dev. 73, 709–718.
Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVWqs7Y%3D&md5=5793ff643a20dee216c5668f636d7f81CAS |

Wang, J., Levasseur, D. N., and Orkin, S. H. (2008). Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 105, 6326–6331.
Requirement of Nanog dimerization for stem cell self-renewal and pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFyhtLo%3D&md5=249aa699d2fdffb7703bf66391ad5086CAS |

Wang, Z., Oron, E., Nelson, B., Razis, S., and Ivanova, N. (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10, 440–454.
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCrs70%3D&md5=84160a031087d5377ccc19a1b59c52c6CAS |

West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19, 1211–1220.
Porcine induced pluripotent stem cells produce chimeric offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVejs77O&md5=318a33d835767ded18d04b7ed97e4484CAS |

West, F. D., Uhl, E. W., Liu, Y., Stowe, H., Lu, Y., Yu, P., Gallegos-Cardenas, A., Pratt, S. L., and Stice, S. L. (2011). Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29, 1640–1643.
Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itbzE&md5=a513af006c3a67d8437bdc04c51ebb0fCAS |

Whyte, A., and Stewart, H. J. (1989). Expression of the proto-oncogene fos (c-fos) by preimplantation blastocysts of the pig. Development 105, 651–656.
| 1:CAS:528:DyaL1MXhvV2qtL8%3D&md5=58c473be1e38bbb0c20aca82908ec068CAS |

Wianny, F., Perreau, C., and Hochereau de Reviers, M. T. (1997). Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biol. Reprod. 57, 756–764.
Proliferation and differentiation of porcine inner cell mass and epiblast in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGjtro%3D&md5=2d4ce7af25f4e65c542a52a2245e966dCAS |

Wolf, X. A., Rasmussen, M. A., Schauser, K., Jensen, A. T., Schmidt, M., and Hyttel, P. (2011a). OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts. Reprod. Domest. Anim. 46, 385–392.
OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mvos1Chug%3D%3D&md5=4822c906ace61dead2bf7fb4b92e1d55CAS |

Wolf, X. A., Serup, P., and Hyttel, P. (2011b). Three-dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri-implantation embryos. Dev. Dyn. 240, 890–897.
Three-dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslekur4%3D&md5=2444b98c84a543a9a6d044d281447f18CAS |

Wolf, X. A., Serup, P., and Hyttel, P. (2011c). Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos. Dev. Dyn. 240, 204–210.
Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos.Crossref | GoogleScholarGoogle Scholar |

Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L., and Xiao, L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1, 46–54.
Generation of pig induced pluripotent stem cells with a drug-inducible system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSisbo%3D&md5=4cfb9ed8e8ee33ef1ed87719f515efbfCAS |

Yin, F., Guo, L., Lu, R. F., and Zhu, Q. S. (2011). Spontaneous differentiation of porcine neural progenitors in vitro. Cytotechnology 63, 363–370.
Spontaneous differentiation of porcine neural progenitors in vitro.Crossref | GoogleScholarGoogle Scholar |

Yoshioka, K. (2011). Development and application of a chemically defined medium for the in vitro production of porcine embryos. J. Reprod. Dev. 57, 9–16.
Development and application of a chemically defined medium for the in vitro production of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Cgu78%3D&md5=209ef0e447e514e34b91a37edbb5cf3fCAS |

Zhao, J., Whyte, J., and Prather, R. S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 341, 13–21.
Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer.Crossref | GoogleScholarGoogle Scholar |

Zhao, M., Isom, S. C., Lin, H., Hao, Y., Zhang, Y., Zhao, J., Whyte, J. J., Dobbs, K. B., and Prather, R. S. (2009). Tracing the stemness of porcine skin-derived progenitors (pSKP) back to specific marker gene expression. Cloning Stem Cells 11, 111–122.
Tracing the stemness of porcine skin-derived progenitors (pSKP) back to specific marker gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Cmt74%3D&md5=92e572af29056f137781d87af7c610a0CAS |

Zhao, M. T., Yang, X., Lee, K., Mao, J., Teson, J. M., Whitworth, K. M., Samuel, M. S., Spate, L. D., Murphy, C. N., and Prather, R. S. (2012). The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells. Stem Cells Dev. , .
The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells.Crossref | GoogleScholarGoogle Scholar |

Zhou, H., Li, W., Zhu, S., Joo, J. Y., Do, J. T., Xiong, W., Kim, J. B., Zhang, K., Scholer, H. R., and Ding, S. (2010). Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J. Biol. Chem. 285, 29 676–29 680.
Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKks7nK&md5=8cb16b55371f14572e4c18dbdf5ce152CAS |