Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse

F. G. Vázquez-Cuevas A , A. Cruz-Rico A , E. Garay A , A. García-Carrancá B , D. Pérez-Montiel C , B. Juárez A and R. O. Arellano A D
+ Author Affiliations
- Author Affiliations

A Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP, 76230, Querétaro México.

B Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México and División de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, México. Av. San Fernando #22, Colonia Sección XVI, Tlalpan, CP, 14080, México DF.

C Departamento de Patología, Instituto Nacional de Cancerología, Secretaría de Salud, México. Av. San Fernando #22, Colonia Sección XVI, Tlalpan, CP, 14080, México DF.

D Corresponding author. Email: arellano.ostoa@comunidad.unam.mx

Reproduction, Fertility and Development 25(7) 971-984 https://doi.org/10.1071/RD12196
Submitted: 21 June 2012  Accepted: 4 September 2012   Published: 11 October 2012

Abstract

Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) activation of P2X7 receptors increased [Ca2+]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24 h using the terminal deoxyribonucleotidyl transferase-mediated dUTP–fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

Additional keywords : ATP, purinergic signalling.


References

Adinolfi, E., Callegari, M. G., Cirillo, M., Pinton, P., Giorgi, C., Cavagna, D., Rizzuto, R., and Di Virgilio, F. (2009). Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis. J. Biol. Chem. 284, 10 120–10 128.
Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKks7s%3D&md5=725c3686481252fd5068917f2d9dfb7aCAS |

Adinolfi, E., Raffaghello, L., Giuliani, A. L., Cavazzini, L., Capece, M., Chiozzi, P., Bianchi, G., Kroemer, G., Pistoia, V., and Di Virgilio, F. (2012). Expression of the P2X7 receptor increases in vivo tumor growth. Cancer Res. 72, 2957–2969.
Expression of the P2X7 receptor increases in vivo tumor growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1yjurw%3D&md5=7569d0dd5b662690041478ec554286e7CAS | 22505653PubMed |

Arellano, R. O., Garay, E., and Miledi, R. (1998). Cl– currents activated via purinergic receptors in Xenopus follicles. Am. J. Physiol. 274, C333–C340.
| 1:CAS:528:DyaK1cXis1yqsr8%3D&md5=03427276fa74f2967caaf834bd862668CAS | 9486121PubMed |

Arellano, R. O., Martínez-Torres, A., and Garay, E. (2002). Ionic currents activated via purinergic receptors in the cumulus cell-enclosed mouse oocyte. Biol. Reprod. 67, 837–846.
Ionic currents activated via purinergic receptors in the cumulus cell-enclosed mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2jsLk%3D&md5=dda99690669b4297d571c5614fdf93a0CAS | 12193392PubMed |

Arellano, R. O., Garay, E., and Vázquez-Cuevas, F. G. (2009). Functional interaction between native G protein-coupled purinergic receptors in Xenopus follicles. Proc. Natl Acad. Sci. USA 106, 16 680–16 685.
Functional interaction between native G protein-coupled purinergic receptors in Xenopus follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ogs7zO&md5=a06b940f087f0286ff41eb47f3a6b5daCAS |

Arellano, R. O., Robles-Martínez, L., Serrano-Flores, B., Vázquez-Cuevas, F., and Garay, E. (2011). Agonist-activated Ca2+ influx and Ca2+-dependent Cl– channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer. J. Cell. Physiol. 227, 3457–3470.
Agonist-activated Ca2+ influx and Ca2+-dependent Cl channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer.Crossref | GoogleScholarGoogle Scholar |

Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K., and Leung, P. C. (2001). Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288.
Ovarian surface epithelium: biology, endocrinology, and pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSntLs%3D&md5=f909a414de67d08995d15005554956dcCAS | 11294827PubMed |

Bandera, C. A., Tsui, H. W., Mok, S. C., and Tsui, F. W. (2003). Expression of cytokines and receptors in normal, immortalized, and malignant ovarian epithelial cell lines. Anticancer Res. 23, 3151–3157.
| 1:CAS:528:DC%2BD3sXntVChtbw%3D&md5=b769ce4fcea71fd6c23cb013480d9af4CAS | 12926048PubMed |

Baricordi, O. R., Ferrari, D., Melchiorri, L., Chiozzi, P., Hanau, S., Chiari, E., Rubini, M., and Di Virgilo, F. (1996). An ATP activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87, 682–690.
| 1:CAS:528:DyaK28XkvFWjsQ%3D%3D&md5=29d58b192b3bd60e87964300600d19c3CAS | 8555491PubMed |

Bintig, W., Baumgart, J., Walter, W. J., Heisterkamp, A., Lubatschowski, H., and Ngezahayo, A. (2009). Purinergic signalling in rat GFSHR-17 granulosa cells: an in vitro model of granulosa cells in maturing follicles. J. Bioenerg. Biomembr. 41, 85–94.
Purinergic signalling in rat GFSHR-17 granulosa cells: an in vitro model of granulosa cells in maturing follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFaqt7k%3D&md5=b570dee9acda49aac405016961218e5bCAS | 19191015PubMed |

Bjersing, L., and Cajander, S. (1975). Ovulation and the role of the ovarian surface epithelium. Experientia 31, 605–608.
Ovulation and the role of the ovarian surface epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7oslSlsA%3D%3D&md5=b9e0ef73e4f66c31aa4afc78d7d5a074CAS | 1140269PubMed |

Bours, M. J., Dagnelie, P. C., Giuliani, A. L., Wesselius, A., and Di Virgilio, F. (2011). P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front. Biosci. S3, 1443–1456.
P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVagtL4%3D&md5=ef387c970deedc689ad5584751e193efCAS |

Burnstock, G. (2007). Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87, 659–797.
Physiology and pathophysiology of purinergic neurotransmission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslGlsr0%3D&md5=2720c74665cd8b05de86e65451f35599CAS | 17429044PubMed |

Chomezynski, P., and Sacchi, N. (2007). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Ann. Biochem. 162, 156–159.
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Crossref | GoogleScholarGoogle Scholar |

Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J. P., and Stojilkovic, S. S. (2011). Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63, 641–683.
Activation and regulation of purinergic P2X receptor channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyrtb3I&md5=d16e5e20594463a6803da656ee094027CAS | 21737531PubMed |

Colgin, D. C., and Murdoch, W. J. (1997). Evidence for a role of the ovarian surface epithelium in the ovulatory mechanism of the sheep: secretion of urokinase-type plasminogen activator. Anim. Reprod. Sci. 47, 197–204.
Evidence for a role of the ovarian surface epithelium in the ovulatory mechanism of the sheep: secretion of urokinase-type plasminogen activator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFGgurY%3D&md5=83550ceb7fb1a075c0536ac7b236efa2CAS | 9329861PubMed |

Cordero, A.B., Kwon, Y., Hua, X., and Godwin, A.K. (2010). In vivo imaging and therapeutic treatments in an orthotopic mouse model of ovarian cancer. J. Vis. Exp. 42, 2125.
| 20811322PubMed |

Corriden, R., and Insel, P. A. (2010). Basal release of ATP: an autocrine–paracrine mechanism for cell regulation. Sci. Signal. 3, re1.
Basal release of ATP: an autocrine–paracrine mechanism for cell regulation.Crossref | GoogleScholarGoogle Scholar | 20068232PubMed |

Coutinho-Silva, R., Persechini, P. M., Bisaggio, R. D., Perfettini, J. L., Neto, A. C., Kanellopoulos, J. M., Motta-Ly, I., Dautry-Varsat, A., and Ojcius, D. M. (1999). P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am. J. Physiol. 276, C1139–C1147.
| 1:CAS:528:DyaK1MXjsVWhsbo%3D&md5=8055bb2243e849be1cadbeda751ac7e7CAS | 10329963PubMed |

Czernobilsky, B. (1985). Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur. J. Cell Biol. 37, 175–190.
| 1:CAS:528:DyaL2MXks1yksLw%3D&md5=9224d06a308328154d95f7c7fdc597e1CAS | 3896804PubMed |

Di Virgilio, F. (2007). Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol. Sci. 28, 465–472.
Liaisons dangereuses: P2X(7) and the inflammasome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWiu73M&md5=f9af2eadfd449fba170bcb931dedab45CAS | 17692395PubMed |

Di Virgilio, F., Ferrari, D., and Adinolfi, E. (2009). P2X(7): a growth-promoting receptor: implications for cancer. Purinergic Signal. 5, 251–256.
P2X(7): a growth-promoting receptor: implications for cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOrurw%3D&md5=aed9add729c69afea466bb844b407394CAS | 19263244PubMed |

Domercq, M., Perez-Samartin, A., Aparicio, D., Alberdi, E., Pampliega, O., and Matute, C. (2012). P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58, 730–740.

Donnelly-Roberts, D. L., Namovic, M. T., Han, P., and Jarvis, M. F. (2009). Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br. J. Pharmacol. 157, 1203–1214.
Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVelt7bO&md5=9a4f340b900a70fe26edee1e641a01b0CAS | 19558545PubMed |

Faria, R. X., Cascabulho, C. M., Reis, R. A., and Alves, L. A. (2010). Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn Schmiedebergs Arch. Pharmacol. 382, 73–87.
Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslShur4%3D&md5=1938955e00e4a265efb7cce15475a6b6CAS | 20508916PubMed |

Ferrari, D., Los, M., Bauer, M. K., Vandenabeele, P., Wesselborg, S., and Schulze-Osthoff, K. (1999). P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett. 447, 71–75.
P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVClsrg%3D&md5=9ccf48cc08e5cd983b45e122a83c088dCAS | 10218585PubMed |

Gaytán, M., Sánchez, M. A., Morales, C., Bellido, C., Millán, Y., Martín de las Mulas, J., Sánchez-Criado, J. E., and Gaytán, F. (2005). Cyclic changes of the ovarian surface epithelium in the rat. Reproduction 129, 311–321.
Cyclic changes of the ovarian surface epithelium in the rat.Crossref | GoogleScholarGoogle Scholar | 15749958PubMed |

Gillett, W. R., James, C., Jetha, N., and McComb, P. F. (1994). Removal of the ovarian surface epithelium from the rabbit ovary a cause of adhesions following a standard injury. Hum. Reprod. 9, 497–500.
| 1:STN:280:DyaK2c3nsVynug%3D%3D&md5=4b57404fd3fb3e401e89ab75ca440a8dCAS | 8006141PubMed |

Gu, B. J., Saunders, B. M., Jursik, C., and Wiley, J. S. (2010). The P2X7–nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 115, 1621–1631.
The P2X7–nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2gtLk%3D&md5=045f758e800fc3bed5f58b52100fbb34CAS | 20007545PubMed |

Hornby, A. E., Pan, J., and Auersperg, N. (1992). Intermediate filaments in rat ovarian surface epithelial cells: changes with neoplastic progression in culture. Biochem. Cell Biol. 70, 16–25.
Intermediate filaments in rat ovarian surface epithelial cells: changes with neoplastic progression in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFWrtbw%3D&md5=fe4840837a77efcb8972db6776cb1398CAS | 1374615PubMed |

Hudson, L. G., Zeineldin, R., and Stack, M. S. (2008). Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin. Exp. Metastasis 25, 643–655.
Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVeisL7K&md5=7d3046e36363ee329cada6b6eb368802CAS | 18398687PubMed |

Leung, P. C., and Choi, J. H. (2007). Endocrine signaling in ovarian surface epithelium and cancer. Hum. Reprod. Update 13, 143–162.
Endocrine signaling in ovarian surface epithelium and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWmu7c%3D&md5=11b27897d3309d4062c3f01aa2683accCAS | 17071638PubMed |

Li, X., Zhou, L., Feng, Y., Abdul-Karim, F. W., and Gorodeski, G. I. (2006). The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol. Biomarkers Prev. 15, 1906–1913.
The P2X7 receptor: a novel biomarker of uterine epithelial cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGktbnO&md5=ae910662a9b6981694f6c5a284a1b3ffCAS | 17035398PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=c02316d2aa02af4c464251269a77c9c9CAS | 11846609PubMed |

Matzuk, M. M., Burns, K. H., Viveiros, M. M., and Eppig, J. J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180.
Intercellular communication in the mammalian ovary: oocytes carry the conversation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsbw%3D&md5=9d9649c54282d35c7e19823e070620adCAS | 12077402PubMed |

Mayo, C., Ren, R., Rich, C., Stepp, M. A., and Trinkaus-Randall, V. (2008). Regulation by P2X7: epithelial migration and stromal organization in the cornea. Invest. Ophthalmol. Vis. Sci. 49, 4384–4391.
Regulation by P2X7: epithelial migration and stromal organization in the cornea.Crossref | GoogleScholarGoogle Scholar | 18502993PubMed |

Monif, M., Reid, C. A., Powell, K. L., Smart, M. L., and Williams, D. A. (2009). The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J. Neurosci. 29, 3781–3791.
The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVSqtLo%3D&md5=584aee9cb1f3c99fdacdfd825f95ba8bCAS | 19321774PubMed |

Murdoch, W. J., and McDonnel, A. C. (2002). Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 123, 743–750.
Roles of the ovarian surface epithelium in ovulation and carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCitbY%3D&md5=75e282c96ceb5b2dd07c24d4e3260bfcCAS | 12052228PubMed |

Nicosia, S. V., Johnson, J. H., and Streibel, E. J. (1984). Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int. J. Gynecol. Pathol. 3, 348–360.
| 1:STN:280:DyaL2M%2FnvVOksg%3D%3D&md5=cb7aba30894672a6adb554774fb84947CAS | 6392121PubMed |

Niño-Moreno, P., Portales-Pérez, D., Hernández-Castro, B., Portales-Cervantes, L., Flores-Meraz, V., Baranda, L., Gómez-Gómez, A., Acuña-Alonzo, V., Granados, J., and González-Amaro, R. (2007). P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin. Exp. Immunol. 148, 469–477.
P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis.Crossref | GoogleScholarGoogle Scholar | 17493019PubMed |

Oyanguren-Desez, O., Rodríguez-Antigüedad, A., Villoslada, P., Domercq, M., Alberdi, E., and Matute, C. (2011). Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium 50, 468–472.
Gain-of-function of P2X7 receptor gene variants in multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejsLnF&md5=cf51b3f3691a8d974c9c15b4d05d68f4CAS | 21906809PubMed |

Pelegrin, P., and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082.
Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFChsrzM&md5=07e5ddd0f568174c49003b516950edcaCAS | 17036048PubMed |

Ponnusamy, M. P., Lakshmanan, I., Jain, M., Das, S., Chakraborty, S., Dey, P., and Batra, S. K. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29, 5741–5754.
MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFelsLk%3D&md5=b33889d52b4d7a6f3e33fed1d1756868CAS | 20697346PubMed |

Rassendren, F., Buell, G. N., Virginio, C., Collo, G., North, R. A., and Surprenant, A. (1997). The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 272, 5482–5486.
The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslalsr0%3D&md5=a940460ac6e083ea13b57194e4c61d9cCAS | 9038151PubMed |

Read, S. M., and Northcote, D. H. (1981). Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal. Biochem. 116, 53–64.
Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsVKns7s%3D&md5=a464aa4aa3bbf32657b24446daf63400CAS | 7304986PubMed |

Slater, M., Danieletto, S., Gidley-Baird, A., Teh, L. C., and Barden, J. A. (2004a). Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology 44, 206–215.
Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FpvVSksA%3D%3D&md5=f2bdb34b8d69af1fd831045889e2204dCAS | 14987223PubMed |

Slater, M., Danieletto, S., Pooley, M., Teh, L. C., Gidley-Baird, A., and Barden, J. A. (2004b). Differentiation between cancerous and normal hyperplastic lobules in breast lesions. Breast Cancer Res. Treat. 83, 1–10.
Differentiation between cancerous and normal hyperplastic lobules in breast lesions.Crossref | GoogleScholarGoogle Scholar | 14997049PubMed |

Solini, A., Cuccato, S., Ferrari, D., Santini, E., Gulinelli, S., Callegari, M. G., Dardano, A., Faviana, P., Madec, S., Di Virgilio, F., and Monzani, F. (2008). Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149, 389–396.
Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVykug%3D%3D&md5=d3841833677b390ff57acae90c2a3dabCAS | 17947359PubMed |

Soronen, P., Mantere, O., Melartin, T., Suominen, K., Vuorilehto, M., Rytsälä, H., Arvilommi, P., Holma, I., Holma, M., Jylhä, P., Valtonen, H. M., Haukka, J., Isometsä, E., and Paunio, T. (2011). P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156, 435–447.
P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVyjtLs%3D&md5=10538f95096d01fe10eb36d8e581eda9CAS |

Tsuji, Y., Tamaoki, T. H., Hasegawa, A., Kashiwamura, S., Lemoto, A., Ueda, H., Muranaka, J., Adachi, S., Furuyama, J., Okamura, H., and Koyama, K. (2001). Expression of interleukin-18 and its receptor in mouse ovary. Am. J. Reprod. Immunol. 46, 349–357.
Expression of interleukin-18 and its receptor in mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mnms1Knuw%3D%3D&md5=c0e5e01b0817297e2a1ec0753b2042c6CAS | 11712764PubMed |

Vázquez-Cuevas, F. G., Juárez, B., Garay, E., and Arellano, R. O. (2006). ATP-induced apoptotic cell death in porcine ovarian theca cells through P2X7 receptor activation. Mol. Reprod. Dev. 73, 745–755.
ATP-induced apoptotic cell death in porcine ovarian theca cells through P2X7 receptor activation.Crossref | GoogleScholarGoogle Scholar | 16541451PubMed |

Vázquez-Cuevas, F. G., Zárate-Díaz, E. P., Garay, E., and Arellano, R. O. (2010). Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca–interstitial cells. Reprod. Biol. Endocrinol. 88, 8.

Ziltener, H. J., Maines-Bandiera, S., Schrader, J. W., and Auersperg, N. (1993). Secretion of bioactive interleukin-1, interleukin-6, and colony-stimulating factors by human ovarian surface epithelium. Biol. Reprod. 49, 635–641.
Secretion of bioactive interleukin-1, interleukin-6, and colony-stimulating factors by human ovarian surface epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1yksL8%3D&md5=7cfbe4ca9eb545232ec21f3663275c6cCAS | 7691194PubMed |

Zou, J., Vetreno, R. P., and Crews, F. T. (2012). ATP–P2X7 receptor signaling controls basal and TNFα-stimulated glial cell proliferation. Glia 60, 661–673.
ATP–P2X7 receptor signaling controls basal and TNFα-stimulated glial cell proliferation.Crossref | GoogleScholarGoogle Scholar | 22298391PubMed |