Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of cytokines and ovarian steroids on equine endometrial function: an in vitro study

A. Galvão A B , L. Valente A , D. J. Skarzynski B , A. Szóstek B , K. Piotrowska-Tomala B , M. R. Rebordão A , L. Mateus A and G. Ferreira-Dias A C
+ Author Affiliations
- Author Affiliations

A Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, Polo Universitário, Alto da Ajuda, 1300-477, Lisboa, Portugal.

B Institute of Animal Reproduction and Food Research of Polish Academy of Science, ul. Bydgoska 7, 10-243 Olsztyn, Poland.

C Corresponding author. Email: gmlfdias@fmv.utl.pt

Reproduction, Fertility and Development 25(7) 985-997 https://doi.org/10.1071/RD12153
Submitted: 15 May 2012  Accepted: 5 September 2012   Published: 18 October 2012

Abstract

Regulation of immune–endocrine interactions in the equine endometrium is not fully understood. The aims of the present study were to: (1) investigate the presence of tumour necrosis factor alpha (TNF), interferon gamma (IFNG), Fas ligand (FASLG) and their receptors in the mare endometrium throughout the oestrous cycle; and (2) assess endometrial secretory function (prostaglandins), angiogenic activity and cell viability in response to TNF, oestradiol (E2), progesterone (P4) and oxytocin (OXT). Transcription of TNF and FASLG mRNA increased during the early and late luteal phase (LP), whereas IFNG mRNA increased in late LP. Transcription of the mRNA of both TNF receptors was highest in the mid-LP. All cytokines and receptors were expressed in surface and glandular epithelium, as well as in the stroma. Expression of TNF and its receptor TNFRSF1A increased during the follicular phase (FP) and mid-LP. IFNG was expressed in the mid-LP, whereas its receptor IFNR1 was expressed in the in mid- and late LP. The highest expression of FASLG and FAS occurred during the late LP. OXT increased the secretion of prostaglandin (PG) E2 and PGF in the FP and mid-LP. In the mid-LP, E2 and P4+E2 stimulated PGF secretion, whereas TNF and P4 increased cell viability. All treatments, with the exception of P4, increased nitric oxide and angiogenic activity in both phases. The coordinated action of cytokines and ovarian hormones may regulate secretory, angiogenic and proliferative functions in the equine endometrium.

Additional keywords : angiogenesis, endometrium, nitric oxide, prostaglandins.


References

Blitek, A., and Ziecik, A. J. (2006). Role of tumour necrosis factor alpha in stimulation of prostaglandins F(2alpha) and E(2) release by cultured porcine endometrial cells. Reprod. Domest. Anim. 41, 562–567.
Role of tumour necrosis factor alpha in stimulation of prostaglandins F(2alpha) and E(2) release by cultured porcine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslOjtA%3D%3D&md5=e14c278d28f7162552dc4e3424bc2e29CAS | 17107518PubMed |

Boerboom, D., Brown, K. A., Vaillancount, D., Poitras, P., Goff, A. K., Watanabe, K., Dore, M., and Sirois, J. (2004). Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy. Biol. Reprod. 70, 391–399.
Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslyquw%3D%3D&md5=475fd935be3d0df7faaa5241ac2a1196CAS | 14561653PubMed |

Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., and Zumla, A. (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112–119.
| 1:CAS:528:DC%2BD2cXlvVagtrg%3D&md5=62601903c9b1605f20a28ac9ef724a0dCAS | 15283208PubMed |

Douglas, R. H., and Ginther, O. J. (1976). Concentration of prostaglandins F in uterine venous plasma of anesthetized mares during the estrous cycle and early pregnancy. Prostaglandins 11, 251–260.
Concentration of prostaglandins F in uterine venous plasma of anesthetized mares during the estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsVymtr0%3D&md5=5c3bb152f17d41d3662a9988f28611c9CAS | 1265294PubMed |

Eroh, M. L., and Ealy, A. D. S. (2007). Pregnancy status and steroid exposure impact the abundance of endometrial cyclooxygenase 2 mRNA in mares. Biol. Reprod. Suppl. 77, 113.

Feng, L., Sun, W., Xia, Y., Tang, W. W., Chanmugam, P., Soyoola, E., Wilson, C. B., and Hwang, D. (1993). Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch. Biochem. Biophys. 307, 361–368.
Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVSns70%3D&md5=6d1832806a9fde2f7337653ee58fe5f0CAS | 8274023PubMed |

Ferreira-Dias, G., Serrão, P. M., Costa Durão, J., and Robalo Silva, J. (2001). Microvascular development and growth of the uterus during the estrous cycle in the mare. Am. J. Vet. Res. 62, 526–530.
Microvascular development and growth of the uterus during the estrous cycle in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvkslOhsg%3D%3D&md5=024299d3303bd77cfeaccdf1290a2d34CAS | 11327459PubMed |

Ferreira-Dias, G., Mateus, L., Costa, A. S., Solá, S., Ramalho, R. M., Castro, R. E., and Rodrigues, C. M. P. (2006a). Progesterone and caspase-3 activation in equine cyclic corpora lutea. Reprod. Domest. Anim. 41, 1–8.

Ferreira-Dias, G., Costa, A. S., Mateus, L., Korzekwa, A., Redmer, D. A., and Skarzynski, D. J. (2006b). Proliferative processes within the equine corpus luteum may depend on paracrine progesterone actions. J. Physiol. Pharmacol. 57, 139–151.
| 17242479PubMed |

Fluhr, H., Krenzer, S., Stein, G. M., Stork, B., Deperschmidt, M., Wallwiener, D., Wesselborg, S., Zygmunt, M., and Licht, P. (2007). Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis. J. Cell Sci. 120, 4126–4133.
Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFeitw%3D%3D&md5=51cb74c5dd713f2e78b469cbfb4e70f4CAS | 18003704PubMed |

Ford, S. P., Christenson, R. K., and Ford, J. J. (1982). Uterine blood flow and uterine arterial venous and luminal concentrations of estrogens on Days 11, 13, and 15 after estrus in pregnant and nonpregnant sows. J. Reprod. Fertil. 64, 185–190.
Uterine blood flow and uterine arterial venous and luminal concentrations of estrogens on Days 11, 13, and 15 after estrus in pregnant and nonpregnant sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XotVahug%3D%3D&md5=6002c1f392ee6d89204b4c7bcf6709f1CAS | 7054493PubMed |

Fu, T. Y., Lin, C. T., and Tang, P. C. (2011). Steroid hormone-regulated let-7b mediates cell proliferation and basigin expression in the mouse endometrium. J. Reprod. Dev. 57, 627–635.
Steroid hormone-regulated let-7b mediates cell proliferation and basigin expression in the mouse endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyktLfO&md5=fc2dd3c606b2b3eb207cdfa8815ce057CAS | 21747213PubMed |

Galvão, A., Skarzynski, D. J., Lukasik, K., Ramilo, D., Tramontano, A., Mollo, A., Mateus, L., and Ferreira-Dias, G. (2010). Is the Fas/Fas ligand system involved in equine corpus luteum functional regression? Biol. Reprod. 83, 901–908.
Is the Fas/Fas ligand system involved in equine corpus luteum functional regression?Crossref | GoogleScholarGoogle Scholar | 20720169PubMed |

Galvão, A., Skarzynski, D. J., Szóstek, A., Silva, E., Tramontano, A., Mollo, A., Mateus, L., and Ferreira-Dias, G. (2012). Cytokines tumor necrosis factor-α and interferon-γ participate in modulation of the equine corpus luteum as autocrine and paracrine factors. J. Reprod. Immunol. 93, 28–37.
Cytokines tumor necrosis factor-α and interferon-γ participate in modulation of the equine corpus luteum as autocrine and paracrine factors.Crossref | GoogleScholarGoogle Scholar | 22186103PubMed |

Goff, A. K. (2004). Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle. Biol. Reprod. 71, 11–16.
Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktLw%3D&md5=efec82b155ce375178cfc276b698e3eaCAS | 14973258PubMed |

Goff, A. K., Pontbriand, D., and Sirois, J. (1987). Oxytocin stimulation of plasma 15-keto-13,14-dihydro prostaglandin F-2α during the oestrous cycle and early pregnancy in the mare. J. Reprod. Fertil. Suppl. 35, 253–260.
| 1:CAS:528:DyaL2sXmt12qtbs%3D&md5=68c324b5a1fbd790ef1c20d50319e1e9CAS | 3479581PubMed |

Hempstock, J., Cindrova-Davies, T., Jauniaux, E., and Burton, G. J. (2004). Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reprod. Biol. Endocrinol. 20, 2–58.

Hixon, J. E., and Flint, A. P. F. (1987). Effects of a luteolytic dose of oestradiol benzoate on uterine oxytocin receptor concentrations, phosphoinositide turnover and prostaglandin F-2alpha secretion in sheep. J. Reprod. Fertil. 79, 457–467.
Effects of a luteolytic dose of oestradiol benzoate on uterine oxytocin receptor concentrations, phosphoinositide turnover and prostaglandin F-2alpha secretion in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs12gsrs%3D&md5=791ed8dd6cb78c3a916601fb0a271ec6CAS | 3033233PubMed |

Homanics, G. E., and Silvia, W. J. (1988). Effects of progesterone and estradiol-17beta on uterine secretion of prostaglandin F2alpha in response to oxytocin in ovariectomized ewes. Biol. Reprod. 38, 804–811.
Effects of progesterone and estradiol-17beta on uterine secretion of prostaglandin F2alpha in response to oxytocin in ovariectomized ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFOlsbs%3D&md5=a2f4206313096a87f1e382832563de06CAS | 3165288PubMed |

Honnens, A., Weisser, S., Welter, H., Einspanier, R., and Bollwein, H. (2011). Relationships between uterine blood flow, peripheral sex steroids, expression of endometrial estrogen receptors and nitric oxide synthases during the estrous cycle in mares. J. Reprod. Dev. 57, 43–48.
Relationships between uterine blood flow, peripheral sex steroids, expression of endometrial estrogen receptors and nitric oxide synthases during the estrous cycle in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Cgu70%3D&md5=445c0e715bcac38a929ab60a66447be2CAS | 20953124PubMed |

Hsu, H., Xiong, J., and Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504.
The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVGgtbk%3D&md5=c59db657e6583ec283e4d6c61807058bCAS | 7758105PubMed |

Jaroszewski, J. J., Bogacki, M., and Skarzynski, D. J. (2003). Progesterone production in bovine luteal cells treated with drugs that modulate nitric oxide production. Reproduction 125, 389–395.
Progesterone production in bovine luteal cells treated with drugs that modulate nitric oxide production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVWqtLc%3D&md5=4da0d3931a90ad59100238fe8e9b2144CAS | 12611602PubMed |

Kelly, R. W., King, A. E., and Critchley, H. O. (2001). Cytokine control in human endometrium. Reproduction 121, 3–19.
Cytokine control in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaktw%3D%3D&md5=df08cc3b4ed570da6f96e8f390bf6c8cCAS | 11226025PubMed |

King, S. S., and Evans, J. W. (1988). Follicular growth and estradiol influence on luteal function in mares. J. Anim. Sci. 66, 98–103.
| 1:CAS:528:DyaL1cXovVahtQ%3D%3D&md5=62bb6a68c72455c10eaecf83682f473fCAS | 3366722PubMed |

Lafrance, M., and Goff, A. K. (1988). Effects of progesterone and oestradiol-17 on oxytocin-induced release of prostaglandin F2. J. Reprod. Fertil. 82, 429–436.
Effects of progesterone and oestradiol-17 on oxytocin-induced release of prostaglandin F2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Wlurw%3D&md5=5dd1b6f3621304356fbb13d5cc41755cCAS | 3163000PubMed |

Lea, R. G., and Sandra, O. (2007). Immunoendocrine aspects of endometrial function and implantation. Reproduction 134, 389–404.
Immunoendocrine aspects of endometrial function and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnur3M&md5=f6c20b39413ded8a4adacc9447178daeCAS | 17709558PubMed |

Lee, J., McCracken, J. A., Stanley, J. A., Nithy, T. K., Banu, S. K., and Arosh, J. A. (2012). Intraluteal Prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep. Biol. Reprod. , .
Intraluteal Prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar | 22743300PubMed |

Malayer, J. R., and Woods, V. M. (1998). Expression of estrogen receptor and maintenance of hormone-responsive phenotype in bovine fetal uterine cells. Domest. Anim. Endocrinol. 15, 141–154.
Expression of estrogen receptor and maintenance of hormone-responsive phenotype in bovine fetal uterine cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVOqtL8%3D&md5=1ed0bbd3721b496846d4dfb9a071d9ceCAS | 9606596PubMed |

McDowell, K. J., Sharp, D. C., Fazleabas, A. T., and Roberts, R. M. (1990). Two-dimensional polyacrylamide gel electrophoresis of proteins synthesized and released by conceptuses and endometria from pony mares. J. Reprod. Fertil. 89, 107–115.
Two-dimensional polyacrylamide gel electrophoresis of proteins synthesized and released by conceptuses and endometria from pony mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlyjtbo%3D&md5=464aa4a6b8ce80bc579364c7f842671dCAS | 2374112PubMed |

Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., Handler, J., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7%2FF&md5=f2c559f84cbbdb1f3380e53b1a151d8cCAS | 20631402PubMed |

Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htr8%3D&md5=0c9a66ab1e5a14c82cd8ce14b7705a8eCAS | 10775155PubMed |

Murakami, S., Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2001). Effects of tumor necrosis factor-alpha on secretion of prostaglandins E2 and F2alpha in bovine endometrium throughout the estrous cycle. Theriogenology 55, 1667–1678.
Effects of tumor necrosis factor-alpha on secretion of prostaglandins E2 and F2alpha in bovine endometrium throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlClsbY%3D&md5=551b76e5ca21e58c0938bf1260f29dbaCAS | 11393218PubMed |

Murakami, S., Shibaya, M., Takeuchi, K., Skarzynski, D. J., and Okuda, K. (2003). A passage and storage system for isolated bovine endometrial epithelial and stromal cells. J. Reprod. Dev. 49, 531–538.
A passage and storage system for isolated bovine endometrial epithelial and stromal cells.Crossref | GoogleScholarGoogle Scholar | 14967905PubMed |

Nagata, S. (1999). Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55.
Fas ligand-induced apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVSmsro%3D&md5=5ccc49acc950fa4ddc60494be22bb508CAS | 10690403PubMed |

Nash, D., Lane, E., Herath, S., and Sheldon, I. M. (2008). Endometrial explant culture for characterizing equine endometritis. Am. J. Reprod. Immunol. 59, 105–117.
Endometrial explant culture for characterizing equine endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCiu7g%3D&md5=dd043e3f95523b7f39ded08a2c6eea7bCAS | 18211536PubMed |

Okuda, K., Sakumoto, R., Okamoto, N., Acosta, T. J., Abe, H., Okada, H., Sinowatz, F., and Skarzynski, D. J. (2010). Cellular localization of genes and proteins for tumor necrosis factor-α (TNF), TNF receptor types I and II in bovine endometrium. Mol. Cell. Endocrinol. 330, 41–48.
Cellular localization of genes and proteins for tumor necrosis factor-α (TNF), TNF receptor types I and II in bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgurrI&md5=758b7f328a6fa8d0f4274c23f025d251CAS | 20705117PubMed |

Poyser, N. L. (1995). The control of prostaglandin production by the endometrium in relation to luteolysis and menstruation Prostaglandins Leukot. Essent. Fatty Acids 53, 147–195.
The control of prostaglandin production by the endometrium in relation to luteolysis and menstruationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVOmtLg%3D&md5=e818d583c9207080aa6419b58eef134cCAS | 7480081PubMed |

Redmer, D. A., Grazul, A. T., Kirsch, D. J., and Reynolds, L. P. (1988). Angiogenic activity of bovine corpora lutea at several stages of luteal development. J. Reprod. Fertil. 82, 627–634.
Angiogenic activity of bovine corpora lutea at several stages of luteal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1aiu7g%3D&md5=151a72689d0195c4e9362d9e2b4b8679CAS | 3163002PubMed |

Roberto da Costa, R. P., Ferreira-Dias, G., Mateus, L., Korzekwa, A., Andronowska, A., Platek, R., and Skarzynski, D. J. (2007a). Endometrial nitric oxide production and nitric oxide synthases in the equine endometrium: relationship with microvascular density during the estrous cycle. Domest. Anim. Endocrinol. 32, 287–302.
Endometrial nitric oxide production and nitric oxide synthases in the equine endometrium: relationship with microvascular density during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7mvFSgug%3D%3D&md5=8bc8222c712ac2995ba6102e9f2150beCAS | 16647832PubMed |

Roberto da Costa, R. P., Serrão, P. M., Monteiro, S., Pessa, P., Silva, J. R., and Ferreira-Dias, G. (2007b). Caspase-3-mediated apoptosis and cell proliferation in the equine endometrium during the oestrous cycle. Reprod. Fertil. Dev. 19, 925–932.
Caspase-3-mediated apoptosis and cell proliferation in the equine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjlsVOrsw%3D%3D&md5=e8d0f22dc1afb5c532e7339b6c26bc11CAS | 18076824PubMed |

Roberto da Costa, R. P., Costa, A. S., Korzekwa, A. J., Platek, R., Siemieniuch, M., Galvão, A., Redmer, D. A., Silva, J. R., Skarzynski, D. J., and Ferreira-Dias, G. (2008). Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod. Fertil. Dev. 20, 674–683.
Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCnurc%3D&md5=f3fe3df2b2377343049ff8d326a64728CAS | 18671915PubMed |

Satterfield, M. C., Song, G., Hayashi, K., Bazer, F. W., and Spencer, T. E. (2008). Progesterone regulation of the endometrial WNT system in the ovine uterus. Reprod. Fertil. Dev. 20, 935–946.
Progesterone regulation of the endometrial WNT system in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks77P&md5=3a549f17cfc9b7218bea1a40607749eaCAS | 19007558PubMed |

Sharp, D. C., and McDowell, K. J. (1985). Critical events surrounding the maternal recognition of pregnancy in mares. E. Vet. J. 3, 19–22.

Sharp, D. C., McDowell, K. J., Weithenauer, J., and Thatcher, W. W. (1989). The continuum of events leading to maternal recognition of pregnancy in mares. J. Reprod. Fertil. Suppl. 37, 101–107.
| 1:CAS:528:DyaL1MXitVKntbs%3D&md5=c93dba956e37c745182432a8bde61ca7CAS | 2810225PubMed |

Sharp, D. C., Thatcher, M. J., Salute, M. E., and Fuchs, A. R. (1997). Relationship between endometrial oxytocin receptors and oxytocin induced prostaglandin F2 alpha release during the oestrous cycle and early pregnancy in pony mares. J. Reprod. Fertil. 109, 137–144.
Relationship between endometrial oxytocin receptors and oxytocin induced prostaglandin F2 alpha release during the oestrous cycle and early pregnancy in pony mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gmu7c%3D&md5=7a85762731a396cbbebd45bddb7839ceCAS | 9068425PubMed |

Skarzynski, D. J., and Okuda, K. (1999). Sensitivity of bovine corpora lutea to prostaglandin F2α is dependent on progesterone, oxytocin and prostaglandins. Biol. Reprod. 60, 1292–1298.
Sensitivity of bovine corpora lutea to prostaglandin F2α is dependent on progesterone, oxytocin and prostaglandins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVaqur0%3D&md5=8cd71aa00fbb8b6df15a2638649aa7afCAS | 10330083PubMed |

Skarzynski, D. J., Uenoyama, Y., Kotwica, J., and Okuda, K. (1999). Noradrenaline stimulates the secretion of prostaglandin F2α in cultured bovine endometrial cells. Biol. Reprod. 60, 277–282.
Noradrenaline stimulates the secretion of prostaglandin F2α in cultured bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlyiug%3D%3D&md5=25b5ad5c7b4a108a86c7abc4e95eb141CAS | 9915991PubMed |

Skarzynski, D. J., Miyamoto, Y., and Okuda, K. (2000). Production of prostaglandin F(2alpha) by cultured bovine endometrial cells in response to tumor necrosis factor alpha: cell type specificity and intracellular mechanisms. Biol. Reprod. 62, 1116–1120.
Production of prostaglandin F(2alpha) by cultured bovine endometrial cells in response to tumor necrosis factor alpha: cell type specificity and intracellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htrw%3D&md5=0b0b8784ab289b21e1b85a94a9cfa952CAS | 10775156PubMed |

Skarzynski, D. J., Jaroszewski, J. J., and Okuda, K. (2005). Role of tumor necrosis factor-alpha and nitric oxide in luteolysis in cattle. Domest. Anim. Endocrinol. 29, 340–346.
Role of tumor necrosis factor-alpha and nitric oxide in luteolysis in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFKns7g%3D&md5=de9fe4f3d063a17429465a2f79f8b984CAS | 15950430PubMed |

Skarzynski, D. J., Woclawek-Potocka, I., Korzekwa, A., Bah, M. M., Piotrowska, K. K., Barszczewska, B., and Okuda, K. (2007). Infusion of exogenous tumor necrosis factor dose dependently alters the length of the luteal phase in cattle: differential responses to treatment with indomethacin and a nitric oxide synthase inhibitor (l-NAME). Biol. Reprod. 76, 619–627.
Infusion of exogenous tumor necrosis factor dose dependently alters the length of the luteal phase in cattle: differential responses to treatment with indomethacin and a nitric oxide synthase inhibitor (l-NAME).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFCnu7g%3D&md5=5db61a89ea87cf5cbd040ef99fc23e07CAS | 17192516PubMed |

Stout, T. A. E., and Allen, W. R. (1999). The role of oxytocin in luteolysis in the cycling mare. Reprod. Domest. Anim. 34, 351–354.
The role of oxytocin in luteolysis in the cycling mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Kmsrk%3D&md5=a1419a75657075fd1c6888b9532c0a3bCAS |

Stout, T. A. E., and Allen, W. R. (2002). Prostaglandin E2 and F2α production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction 123, 261–268.
Prostaglandin E2 and F2α production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChtr8%3D&md5=91b91f263db8a45509ac58eb851dda3aCAS |

Szóstek, A. Z., Siemieniuch, M. J., Galvão, A. M., Lukasik, K., Zieba, D., Ferreira-Dias, G. M., and Skarzynski, D. J. (2012). Effects of cell storage and passage on basal and oxytocin-regulated prostaglandin secretion by equine endometrial epithelial and stromal cells. Theriogenology 77, 1698–1708.
Effects of cell storage and passage on basal and oxytocin-regulated prostaglandin secretion by equine endometrial epithelial and stromal cells.Crossref | GoogleScholarGoogle Scholar | 22357062PubMed |

Tamm, K., Rõõm, M., Salumets, A., and Metsis, M. (2009). Genes targeted by the estrogen and progesterone receptors in the human endometrial cell lines HEC1A and RL95-2. Reprod. Biol. Endocrinol. 7, 150.
Genes targeted by the estrogen and progesterone receptors in the human endometrial cell lines HEC1A and RL95-2.Crossref | GoogleScholarGoogle Scholar | 20034404PubMed |

Tanikawa, M., Lee, H. Y., Watanabe, K., Majewska, M., Skarzynski, D. J., Park, S. B., Lee, D. S., Park, C. K., Acosta, T. J., and Okuda, K. (2008). Regulation of prostaglandin biosynthesis by interleukin-1 in cultured bovine endometrial cells. J. Endocrinol. 199, 425–434.
Regulation of prostaglandin biosynthesis by interleukin-1 in cultured bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemur7P&md5=1b3a7431fd36bc66e972bc1b93f8c5e8CAS | 18824521PubMed |

Toloubeydokhti, T., Pan, Q., Luo, X., Bukulmez, O., and Chegini, N. (2008). The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod. Sci. 15, 993–1001.
The expression and ovarian steroid regulation of endometrial micro-RNAs.Crossref | GoogleScholarGoogle Scholar | 19088369PubMed |

Vanderwall, D. K., Woods, G. L., Weber, J. A., and Lichtenwalner, A. B. (1993). PGE2 secretion by the conceptus and binding by non-pregnant endometrium in the horse. Equine Vet. J. Suppl. 15, 24–27.

Vanderwall, D. K., Woods, G. L., Weber, J. A., and Lichtenwalner, A. B. (1994). Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or oestradiol-17β. Theriogenology 42, 1069–1083.
Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or oestradiol-17β.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Giu7o%3D&md5=5b5b1c31df24217e9d17570e3b7762cfCAS | 16727611PubMed |

Vernon, M. W., Zavy, M. T., Asquith, R. L., and Sharp, D. C. (1981). Prostaglandin F2alpha in the equine endometrium: steroid modulation and production capacities during the estrous cycle and early pregnancy. Biol. Reprod. 25, 581–589.
Prostaglandin F2alpha in the equine endometrium: steroid modulation and production capacities during the estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XpvF0%3D&md5=a36cb0e4d608baf97b37967e9185bcf8CAS | 6946841PubMed |

von Wolff, M., Thaler, C. J., Strowitzki, T., Broome, J., Stolz, W., and Tabibzadeh, S. (2000). Regulated expression of cytokines in human endometrium throughout the menstrual cycle: dysregulation in habitual abortion. Mol. Hum. Reprod. 6, 627–634.
Regulated expression of cytokines in human endometrium throughout the menstrual cycle: dysregulation in habitual abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVeqsLo%3D&md5=809ffa8f7890c4bf67cb867a7c78a7a9CAS | 10871650PubMed |

Watson, E. D., and Sertich, P. L. (1989). Prostaglandin production by horse embryos and the effect of co-culture of embryos with endometrium from pregnant mares. J. Reprod. Fertil. 87, 331–336.
Prostaglandin production by horse embryos and the effect of co-culture of embryos with endometrium from pregnant mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvVyiu7Y%3D&md5=07f84d6cf4d6abd34edb27f8f1e53693CAS | 2621704PubMed |

Weber, J. A., Freeman, D. A., Vanderwall, D. K., and Woods, G. L. (1991). Prostaglandin E2 secretion by oviductal transport-stage equine embryos. Biol. Reprod. 45, 540–543.
Prostaglandin E2 secretion by oviductal transport-stage equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvF2msLo%3D&md5=caa43e8886978971700ffc2753d3730eCAS | 1751627PubMed |

Woclawek-Potocka, I., Deptula, K., Bah, M. M., Lee, H. Y., Okuda, K., and Skarzynski, D. J. (2004). Effects of nitric oxide and tumor necrosis factor-alpha on production of prostaglandin F2alpha and E2 in bovine endometrial cells. J. Reprod. Dev. 50, 333–340.
Effects of nitric oxide and tumor necrosis factor-alpha on production of prostaglandin F2alpha and E2 in bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1KrtLg%3D&md5=9111008a07938b97825c7f9f39ba0eaaCAS | 15226598PubMed |

Xia, H. F., Jin, X. H., Song, P. P., Cui, Y., Liu, C. M., and Ma, X. (2010). Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int. J. Mol. Sci. 11, 719–730.
Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1ygurs%3D&md5=5457a76f00be536d2dd2df5282ce617aCAS | 20386663PubMed |

Yasuo, T., and Kitaya, K. (2009). Effect of ovarian steroids on gene expression profile in human uterine microvascular endothelial cells. Fertil. Steril. 92, 709–721.
Effect of ovarian steroids on gene expression profile in human uterine microvascular endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GntbvO&md5=a741b6bd041b480c9c2e4a02c4c54b8bCAS | 18692832PubMed |

Zavy, M. T., Bazer, F. W., Sharp, D. C., Frank, M., and Thatcher, W. W. (1978). Uterine luminal prostaglandin F in cycling mares. Prostaglandins 16, 643–650.
Uterine luminal prostaglandin F in cycling mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlt1egtw%3D%3D&md5=9638d315803313e625f964f31036054fCAS | 725092PubMed |

Zavy, M. T., Vernon, M. W., Asquith, R. L., Bazer, F. W., and Sharp, D. C. (1984). Effect of exogenous gonadal steroids and pregnancy on uterine luminal PGF2α in mares. Prostaglandins 27, 311–320.
Effect of exogenous gonadal steroids and pregnancy on uterine luminal PGF2α in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFWhtrc%3D&md5=01953ac27d01dbb034175d470e7df4b4CAS | 6718755PubMed |

Zhao, S., and Fernald, R. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064.
Comprehensive algorithm for quantitative real-time polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFemtb7K&md5=4b0cba713e5887a8cbfc9b6981397a94CAS | 16241897PubMed |