Spermatozoa from mice deficient in Niemann-Pick disease type C2 (NPC2) protein have defective cholesterol content and reduced in vitro fertilising ability
Dolores Busso A B E , María José Oñate-Alvarado B , Elisa Balboa A , Juan Castro A , Carlos Lizama B , Gabriela Morales A , Susana Vargas C , Steffen Härtel C , Ricardo D. Moreno B and Silvana Zanlungo A D EA Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica. Avda. Bernardo O’Higgins 340. 8331150 Santiago, Chile.
B Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica. Avda. Bernardo O’Higgins 340. 8331150 Santiago, Chile.
C Laboratory for Scientific Image Analysis (SCIAN-Lab), Program of Anatomy and Developmental Biology, Instituto de Ciencias Biomédicas ICBM, Faculty of Medicine, Universidad de Chile, Avda. Independencia 1027. 8389100 Santiago, Chile.
D FONDAP “Center for Genome Regulation”, Avenida Blanco Encalada 2085. 8370415 Santiago, Chile.
E Corresponding authors. Emails: dbusso@med.puc.cl; silvana@med.puc.cl
Reproduction, Fertility and Development 26(4) 609-621 https://doi.org/10.1071/RD12059
Submitted: 25 February 2012 Accepted: 3 April 2013 Published: 29 May 2013
Abstract
The cholesterol content of the sperm membrane is regulated during both maturation in the epididymis and capacitation in the female tract, two processes required for the spermatozoa to acquire their fertilising ability. Because Niemann-Pick disease, type C2 (NPC2) protein is one of the most abundant components of the epididymal fluid and contains a functional cholesterol-binding site that can transfer cholesterol between membranes, it has been suggested for years that NPC2 could be involved in the regulation of cholesterol levels in spermatozoa during epididymal maturation. In the present study, western blot and immunohistochemistry analyses demonstrated significant levels of NPC2 in the mouse epididymal epithelium. Epididymal spermatozoa obtained from NPC2–/– mice were morphologically normal and had normal motility parameters, but had a reduced cholesterol content compared with that of wild-type (WT) spermatozoa, as determined by both biochemical and by flow cytometry analyses. These results suggest that NPC2 could be involved in regulating cholesterol levels in spermatozoa during epididymal maturation. To understand the relevance of epididymal NPC2 for sperm function, the ability of spermatozoa to undergo events influenced by epididymal maturation, such as capacitation and fertilisation, were compared between WT and NPC2–/– mice. Capacitated NPC2–/– spermatozoa exhibited defective tyrosine phosphorylation patterns and a reduced ability to fertilise cumulus–oocyte complexes compared with WT spermatozoa, supporting the relevance of mouse epididymal NPC2 for male fertility.
Additional keywords: epididymis, fertilisation.
References
Aitken, R. J., Nixon, B., Lin, M., Koppers, A. J., Lee, Y. H., and Baker, M. A. (2007). Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J. Androl. 9, 554–564.| Proteomic changes in mammalian spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSlt7s%3D&md5=0753a31f3e004a9ef6ae1158983b2fdbCAS | 17589795PubMed |
Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., and Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470–475.
| 1:CAS:528:DyaE2cXkt1arsL8%3D&md5=4ccc99c3ae430c6fcbe80df59dc93d75CAS | 4818200PubMed |
Argraves, W. S., and Morales, C. R. (2004). Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct. Mol. Reprod. Dev. 69, 419–427.
| Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFOlurc%3D&md5=1d6bc7c73dc68b3a60733b7ff36c5773CAS | 15457546PubMed |
Asquith, K. L., Baleato, R. M., McLaughlin, E. A., Nixon, B., and Aitken, R. J. (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 117, 3645–3657.
| Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFertrc%3D&md5=da80bba95eb723979733489135b3ccf5CAS | 15252132PubMed |
Babalola, J. O., Wendeler, M., Breiden, B., Arenz, C., Schwarzmann, G., Locatelli-Hoops, S., and Sandhoff, K. (2007). Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein. Biol. Chem. 388, 617–626.
| Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeqtb0%3D&md5=db61543dd61015b45176ddbd10f1a67fCAS | 17552909PubMed |
Biggers, J. D., Whitten, W. K., and Whittingham, D. G. (1971). Methods in mammalian embrology, Ed. JC Daniel, Freeman, San Frascisco. 86–116.
Busso, D., Onate-Alvarado, M. J., Balboa, E., Zanlungo, S., and Moreno, R. D. (2010). Female infertility due to anovulation and defective steroidogenesis in NPC2 deficient mice. Mol. Cell. Endocrinol. 315, 299–307.
| Female infertility due to anovulation and defective steroidogenesis in NPC2 deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFymsL3I&md5=605e84112778a6fa326c5b23396ebbe8CAS | 19883728PubMed |
Chikh, K., Vey, S., Simonot, C., Vanier, M. T., and Millat, G. (2004). Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol. Genet. Metab. 83, 220–230.
| Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslCru7g%3D&md5=c3d79b72f2521ca58dfe66284a157fb2CAS | 15542393PubMed |
Committee for the Update of the Guide for the Care and Use of Laboratory Animals; National Research Council (2011). Guide for the Care and Use of Laboratory Animals. 8th edition. (National Academies Press: Washington, DC) Available from: http://www.ncbi.nlm.nih.gov/books/NBK54050/
Cornwall, G. A. (2009). New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227.
| New insights into epididymal biology and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ogurc%3D&md5=070e227e7b101702ffa7e7c56cd9459fCAS | 19136456PubMed |
Cross, N. L. (1998). Role of cholesterol in sperm capacitation. Biol. Reprod. 59, 7–11.
| Role of cholesterol in sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaksL0%3D&md5=0b6dd296bd4e57e33a051fa958f0f461CAS | 9674986PubMed |
Cross, N. L. (2004). Reorganization of lipid rafts during capacitation of human sperm. Biol. Reprod. 71, 1367–1373.
| Reorganization of lipid rafts during capacitation of human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqurs%3D&md5=9db4fa0f7533adfdd41e4c92cbd95e86CAS | 15215196PubMed |
Da Ros, V. G., Munuce, M. J., Cohen, D. J., Marin-Briggiler, C. I., Busso, D., Visconti, P. E., and Cuasnicu, P. S. (2004a). Bicarbonate is required for migration of sperm epididymal protein DE (CRISP-1) to the equatorial segment and expression of rat sperm fusion ability. Biol. Reprod. 70, 1325–1332.
| Bicarbonate is required for migration of sperm epididymal protein DE (CRISP-1) to the equatorial segment and expression of rat sperm fusion ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFeltLo%3D&md5=36eb600c8d56f95e24317ba2d7b80589CAS | 14711787PubMed |
Da Ros, V. G., Munuce, M. J., Cohen, D. J., Marin-Briggiler, C. I., Busso, D., Visconti, P. E., and Cuasnicu, P. S. (2004b). Bicarbonate is required for migration of sperm epididymal protein DE (CRISP-1) to the equatorial segment and expression of rat sperm fusion ability. Biol. Reprod. 70, 1325–1332.
| Bicarbonate is required for migration of sperm epididymal protein DE (CRISP-1) to the equatorial segment and expression of rat sperm fusion ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFeltLo%3D&md5=36eb600c8d56f95e24317ba2d7b80589CAS | 14711787PubMed |
Dacheux, J. L., Gatti, J. L., and Dacheux, F. (2003). Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc. Res. Tech. 61, 7–17.
| Contribution of epididymal secretory proteins for spermatozoa maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslymt7w%3D&md5=f047b9fabfbad6202f822fc64e53de12CAS | 12672118PubMed |
Fan, J., Akabane, H., Graham, S. N., Richardson, L. L., and Zhu, G. Z. (2006). Sperm defects in mice lacking a functional Niemann-Pick C1 protein. Mol. Reprod. Dev. 73, 1284–1291.
| Sperm defects in mice lacking a functional Niemann-Pick C1 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnu7s%3D&md5=0d13dd08824f2b650858145630357281CAS | 16850391PubMed |
Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.
| 1:STN:280:DyaG2s%2FnsFCjtw%3D%3D&md5=a76b23dbeac90cf7b7adcc7df39485e7CAS | 13428781PubMed |
Fouchécourt, S., Métayer, S., Locatelli, A., Dacheux, F., and Dacheux, J. L. (2000). Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins. Biol. Reprod. 62, 1790–1803.
| Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins.Crossref | GoogleScholarGoogle Scholar | 10819784PubMed |
Friedland, N., Liou, H. L., Lobel, P., and Stock, A. M. (2003). Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc. Natl. Acad. Sci. USA 100, 2512–2517.
| Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVais7s%3D&md5=1ac0a66d842ac1fa514636a6921ad1edCAS | 12591954PubMed |
Fröhlich, O., and Young, L. G. (1996). Molecular cloning and characterization of EPI-1, the major protein in chimpanzee (Pan troglodytes) cauda epididymal fluid. Biol. Reprod. 54, 857–864.
| Molecular cloning and characterization of EPI-1, the major protein in chimpanzee (Pan troglodytes) cauda epididymal fluid.Crossref | GoogleScholarGoogle Scholar | 8924506PubMed |
Gadella, B. M., Tsai, P. S., Boerke, A., and Brewis, I. A. (2008). Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 52, 473–480.
| Sperm head membrane reorganisation during capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12qs7bF&md5=550dc4e97b16a8321f15458190d1c8b9CAS | 18649260PubMed |
Gévry, N. Y., Lopes, F. L., Ledoux, S., and Murphy, B. D. (2004). Aberrant intracellular cholesterol transport disrupts pituitary and ovarian function. Mol. Endocrinol. 18, 1778–1786.
| Aberrant intracellular cholesterol transport disrupts pituitary and ovarian function.Crossref | GoogleScholarGoogle Scholar | 15105438PubMed |
Ghanayem, B. I., Bai, R., Kissling, G. E., Travlos, G., and Hoffler, U. (2010). Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol. Reprod. 82, 96–104.
| Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsrrK&md5=e1f407654f03b1b6730895fe85ea3716CAS | 19696015PubMed |
Girouard, J., Frenette, G., and Sullivan, R. (2008). Seminal plasma proteins regulate the association of lipids and proteins within detergent-resistant membrane domains of bovine spermatozoa. Biol. Reprod. 78, 921–931.
| Seminal plasma proteins regulate the association of lipids and proteins within detergent-resistant membrane domains of bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOns74%3D&md5=538e6afa5710ab4ec7729835f868b9e8CAS | 18235103PubMed |
Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W., and O’Brien, D. A. (2011). Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 84, 1207–1215.
| Classification of mouse sperm motility patterns using an automated multiclass support vector machines model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemu74%3D&md5=412fd7f26b12dae7542b577adafdbe90CAS | 21349820PubMed |
Haidl, G., and Opper, C. (1997). Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum. Reprod. 12, 2720–2723.
| Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVOhtg%3D%3D&md5=6d346a160a4a76259d504edc621b565cCAS | 9455842PubMed |
Hall, J. C., Hadley, J., and Doman, T. (1991). Correlation between changes in rat sperm membrane lipids, protein, and the membrane physical state during epididymal maturation. J. Androl. 12, 76–87.
| 1:CAS:528:DyaK3MXhs1WlsLo%3D&md5=0ae5698380940c39e7b654d54dc94ce5CAS | 1849130PubMed |
Infante, R. E., Wang, M. L., Radhakrishnan, A., Kwon, H. J., Brown, M. S., and Goldstein, J. L. (2008). NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 105, 15 287–15 292.
| NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GntrfK&md5=3af181f41231be549662220207a837f0CAS |
Jones, R. (1998). Plasma membrane structure and remodelling during sperm maturation in the epididymis. J. Reprod. Fertil. Suppl. 53, 73–84.
| 1:CAS:528:DyaK1MXitVekuro%3D&md5=d7857e1a72652b9bb27db0a921633ea1CAS | 10645268PubMed |
Jones, R., James, P. S., Howes, L., Bruckbauer, A., and Klenerman, D. (2007). Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J. Androl. 9, 438–444.
| Supramolecular organization of the sperm plasma membrane during maturation and capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSlsLw%3D&md5=8f0089812a41fb7af64048ad972d9c8fCAS | 17589780PubMed |
Kawai, Y., Hata, T., Suzuki, O., and Matsuda, J. (2006). The relationship between sperm morphology and in vitro fertilization ability in mice. J. Reprod. Dev. 52, 561–568.
| The relationship between sperm morphology and in vitro fertilization ability in mice.Crossref | GoogleScholarGoogle Scholar | 16757880PubMed |
Kirchhoff, C., Osterhoff, C., and Young, L. (1996). Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol. Reprod. 54, 847–856.
| Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslKit70%3D&md5=ef4ce7083705a513c498b8cf73ad4ab0CAS | 8924505PubMed |
Klein, A., Amigo, L., Retamal, M. J., Morales, M. G., Miquel, J. F., Rigotti, A., and Zanlungo, S. (2006). NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology 43, 126–133.
| NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1SgtQ%3D%3D&md5=d66a8c3d98dd2678cc700d6b7eccad9fCAS | 16374838PubMed |
Kwon, H. J., Abi-Mosleh, L., Wang, M. L., Deisenhofer, J., Goldstein, J. L., Brown, M. S., and Infante, R. E. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224.
| Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol.Crossref | GoogleScholarGoogle Scholar | 19563754PubMed |
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
| Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=6f0c22623faf3f19401c15a9d52476bdCAS | 5432063PubMed |
Law, G. L., McGuinness, M. P., Linder, C. C., and Griswold, M. D. (1997). Expression of apolipoprotein E mRNA in the epithelium and interstitium of the testis and the epididymis. J. Androl. 18, 32–42.
| 1:CAS:528:DyaK2sXit12murg%3D&md5=85b7eb6fbe2be3b400c1612206333fffCAS | 9089066PubMed |
Legaré, C., Verville, N., and Sullivan, R. (2004). Vasectomy influences expression of HE1 but not HE2 and HE5 genes in human epididymis. J. Androl. 25, 30–43.
| 14662784PubMed |
Légaré, C., Thabet, M., Gatti, J. L., and Sullivan, R. (2006). HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy. Mol. Hum. Reprod. 12, 461–468.
| HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy.Crossref | GoogleScholarGoogle Scholar | 16772431PubMed |
Liu, D. Y., Clarke, G. N., and Baker, H. W. (2006). Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluorescence correlates strongly with sperm-zona pellucida (ZP) binding but not with the ZP-induced acrosome reaction. Hum. Reprod. 21, 1002–1008.
| Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluorescence correlates strongly with sperm-zona pellucida (ZP) binding but not with the ZP-induced acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOnsbc%3D&md5=7fc4c26f0776063789180309e0357c9dCAS | 16428332PubMed |
Morales, C. R., Marat, A. L., Ni, X., Yu, Y., Oko, R., Smith, B. T., and Argraves, W. S. (2008). ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem. Biophys. Res. Commun. 376, 472–477.
| ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ensrbM&md5=bcd889da54f6e110a8f4ac70c4683110CAS | 18793613PubMed |
Naureckiene, S., Sleat, D. E., Lackland, H., Fensom, A., Vanier, M. T., Wattiaux, R., Jadot, M., and Lobel, P. (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298–2301.
| Identification of HE1 as the second gene of Niemann-Pick C disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptFSmsro%3D&md5=fc2f32dbf671c07dd1b9236337b3d722CAS | 11125141PubMed |
Naz, R. K. (1996). Protein tyrosine phosphorylation and signal transduction during capacitation-acrosome reaction and zona pellucida binding in human sperm. Arch. Androl. 37, 47–55.
| Protein tyrosine phosphorylation and signal transduction during capacitation-acrosome reaction and zona pellucida binding in human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVWqtrc%3D&md5=2cf2ef36542f17b03468e140596bffd3CAS | 8827347PubMed |
Nicolson, G. L., Yanagimachi, R., and Yanagimachi, H. (1975). Ultrastuctural localization of lectin-binding sites on the zonae pellucidae and plasma membrane of mammalian egg. J. Cell Biol. 66, 263–274.
| Ultrastuctural localization of lectin-binding sites on the zonae pellucidae and plasma membrane of mammalian egg.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7ovFKqtQ%3D%3D&md5=90445ad41ec950957207b769149d000eCAS | 1095597PubMed |
Okamura, N., Kiuchi, S., Tamba, M., Kashima, T., Hiramoto, S., Baba, T., Dacheux, F., Dacheux, J. L., Sugita, Y., and Jin, Y. Z. (1999). A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim. Biophys. Acta 1438, 377–387.
| A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFChu7g%3D&md5=8881bb9787546b18c366db6fd23f911eCAS | 10366780PubMed |
Parks, J. E., and Hammerstedt, R. H. (1985). Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol. Reprod. 32, 653–668.
| Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1CmtL4%3D&md5=70fff4facaa9b234f3065789b8c03959CAS | 3158356PubMed |
Pentchev, P. G., Blanchette-Mackie, E. J., and Liscum, L. (1997). Biological implications of the Niemann-Pick C mutation. Subcell. Biochem. 28, 437–451.
| Biological implications of the Niemann-Pick C mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslCltrc%3D&md5=4412349ce3ca87c123c2ca5d7778bda1CAS | 9090302PubMed |
Petrunkina, A. M., and Harrison, R. A. P. (2010). Systematic misestimation of cell subpopulations by flow cytometry: A mathematical analysis. Theriogenology 73, 839–847.
| Systematic misestimation of cell subpopulations by flow cytometry: A mathematical analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gtlKlsw%3D%3D&md5=cf81c2da390a2afc9fe4c77a2d35ce7cCAS | 19896183PubMed |
Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
| Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gsVejtQ%3D%3D&md5=a83726cf4e3be80153906064e2fa578eCAS | 20171719PubMed |
Quinn, P., Kerin, J. F., and Warnes, G. M. (1985). Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil. Steril. 44, 493–498.
| 1:STN:280:DyaL28%2FjtVOnuw%3D%3D&md5=e4612b692d76adc3d40e23c941adb263CAS | 3902512PubMed |
Ramalho-Santos, J., Schatten, G., and Moreno, R. D. (2002). Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol. Reprod. 67, 1043–1051.
| Control of membrane fusion during spermiogenesis and the acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rsbw%3D&md5=fbdd24407f9d1566036e1c6a0b6d5233CAS | 12297516PubMed |
Rejraji, H., Sion, B., Prensier, G., Carreras, M., Motta, C., Frenoux, J. M., Vericel, E., Grizard, G., Vernet, P., and Drevet, J. R. (2006). Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol. Reprod. 74, 1104–1113.
| Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyrtrY%3D&md5=46915975cd86cda75dcbd6e16d6b31a3CAS | 16510839PubMed |
Shadan, S., James, P. S., Howes, E. A., and Jones, R. (2004). Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol. Reprod. 71, 253–265.
| Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKku78%3D&md5=015cabf06fefbeba5e2f7c12451ea6c8CAS | 15028630PubMed |
Sleat, D. E., Wiseman, J. A., El Banna, M., Price, S. M., Verot, L., Shen, M. M., Tint, G. S., Vanier, M. T., Walkley, S. U., and Lobel, P. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl. Acad. Sci. USA 101, 5886–5891.
| Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKns74%3D&md5=e62aa577d569373250cbce4830cf5441CAS | 15071184PubMed |
Sztein, J. M., Farley, J. S., and Mobraaten, L. E. (2000). In vitro fertilization with cryopreserved inbred mouse sperm. Biol. Reprod. 63, 1774–1780.
| In vitro fertilization with cryopreserved inbred mouse sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKht7Y%3D&md5=3ff3f0adb5790d7a149d5e32972e0a14CAS | 11090448PubMed |
Takeo, T., Hoshii, T., Kondo, Y., Toyodome, H., Arima, H., Yamamura, K., Irie, T., and Nakagata, N. (2008). Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol. Reprod. 78, 546–551.
| Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSlu78%3D&md5=8711ff1a2273112a02fc9d3765509efbCAS | 18046011PubMed |
Tash, J. S., and Means, A. R. (1983). Cyclic adenosine 3′,5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 28, 75–104.
| Cyclic adenosine 3′,5′ monophosphate, calcium and protein phosphorylation in flagellar motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1Wntrk%3D&md5=f2d1d47acebf9b602421d62af5d858b0CAS | 6299416PubMed |
Tomes, C. N., McMaster, C. R., and Saling, P. M. (1996). Activation of mouse sperm phosphatidylinositol-4,5 bisphosphate-phospholipase C by zona pellucida is modulated by tyrosine phosphorylation. Mol. Reprod. Dev. 43, 196–204.
| Activation of mouse sperm phosphatidylinositol-4,5 bisphosphate-phospholipase C by zona pellucida is modulated by tyrosine phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpslWitA%3D%3D&md5=48d5fa9fdaa7187b0ac510feca2446a2CAS | 8824918PubMed |
Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.
| Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtVKltLw%3D&md5=8fb1084e15085343b720d0590f0d7c76CAS | 388439PubMed |
Travis, A. J., Merdiushev, T., Vargas, L. A., Jones, B. H., Purdon, M. A., Nipper, R. W., Galatioto, J., Moss, S. B., Hunnicutt, G. R., and Kopf, G. S. (2001). Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev. Biol. 240, 599–610.
| Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSrtrY%3D&md5=463574aa936a6daa2eb7e6f784c66052CAS | 11784086PubMed |
Uhlenbruck, F., Sinowatz, F., Amselgruber, W., Kirchhoff, C., and Ivell, R. (1993). Tissue-specific gene expression as an indicator of epididymis-specific functional status in the boar, bull and stallion. Int. J. Androl. 16, 53–61.
| Tissue-specific gene expression as an indicator of epididymis-specific functional status in the boar, bull and stallion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3isVWqug%3D%3D&md5=c1c8804f34d4f35eada05e8866d0a600CAS | 8096831PubMed |
Urner, F., Leppens-Luisier, G., and Sakkas, D. (2001). Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol. Reprod. 64, 1350–1357.
| Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKru7c%3D&md5=cf15813e5eeecc6841fa2202946a3bedCAS | 11319138PubMed |
Visconti, P. E., Bailey, J. L., Moore, G. D., Pan, D., Olds-Clarke, P., and Kopf, G. S. (1995). Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121, 1129–1137.
| 1:CAS:528:DyaK2MXltVamur8%3D&md5=ebb66a060118ad71c9d800f05f295d8cCAS | 7743926PubMed |
Visconti, P. E., Galantino-Homer, H., Ning, X., Moore, G. D., Valenzuela, J. P., Jorgez, C. J., Alvarez, J. G., and Kopf, G. S. (1999a). Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J. Biol. Chem. 274, 3235–3242.
| Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVCisQ%3D%3D&md5=ae4c7da66a007acac2d12ebbb5746968CAS | 9915865PubMed |
Visconti, P. E., Ning, X., Fornes, M. W., Alvarez, J. G., Stein, P., Connors, S. A., and Kopf, G. S. (1999b). Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol. 214, 429–443.
| Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1CrtLo%3D&md5=dc925cf4355ab99dc18357085e3e708bCAS | 10525345PubMed |
Xie, F., Garcia, M. A., Carlson, A. E., Schuh, S. M., Babcock, D. F., Jaiswal, B. S., Gossen, J. A., Esposito, G., van Duin, M., and Conti, M. (2006). Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev. Biol. 296, 353–362.
| Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gs7k%3D&md5=77002016135ffd03b947249db19d9343CAS | 16842770PubMed |
Yanagimachi, R. (1994). Mammalian Fertilization. In ‘The Physiology of Reproduction.’. (Eds E. Knobil and J. D. Neill) pp. 189–317. (Raven Press: New York).