Programming the offspring through altered uteroplacental hemodynamics: how maternal environment impacts uterine and umbilical blood flow in cattle, sheep and pigs
Kimberly A. Vonnahme A B and Caleb O. Lemley AA Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, PO Box 6050, NDSU Department 7630 Fargo, ND 58108-6050, USA.
B Corresponding author. Email: kim.vonnahme@ndsu.edu
Reproduction, Fertility and Development 24(1) 97-104 https://doi.org/10.1071/RD11910
Published: 6 December 2011
Abstract
As placental growth and vascularity precedes exponential fetal growth, not only is proper establishment of the placenta important, but also a continual plasticity of placental function throughout gestation. Inadequate maternal environment, such as nutritional plane, has been documented to alter fetal organogenesis and growth, thus leading to improper postnatal growth and performance in many livestock species. The timing and duration of maternal nutritional restriction appears to influence the capillary vascularity, angiogenic profile and vascular function of the placenta in cattle and sheep. In environments where fetal growth and/or fetal organogenesis are compromised, potential therapeutics may augment placental nutrient transport capacity and improve offspring performance. Supplementation of specific nutrients, including protein, as well as hormone supplements, such as indolamines, during times of nutrient restriction may assist placental function. Current use of Doppler ultrasonography has allowed for repeated measurements of uterine and umbilical blood flow including assessment of uteroplacental hemodynamics in cattle, sheep and swine. Moreover, these variables can be monitored in conjugation with placental capacity and fetal growth at specific time points of gestation. Elucidating the consequences of inadequate maternal intake on the continual plasticity of placental function will allow us to determine the proper timing and duration for intervention.
Additional keywords: developmental programming, placenta, umbilical blood flow, uterine blood flow.
References
Barker, D. J. P., Hales, C. N., Fall, C. H. D., Osmond, C., Phipps, K., and Clark, P. M. S. (1993). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36, 62–67.| 1:STN:280:DyaK3s7ntVKjuw%3D%3D&md5=0e6b7b196359c8ee4b116bced3f2f0eeCAS |
Borowicz, P. P., Arnold, D. R., Johnson, M. L., Grazul-Bilska, A. T., Redmer, D. A., and Reynolds, L. P. (2007). Placental growth throughout the last two-thirds of pregnancy in sheep: vascular development and angiogenic factor expression. Biol. Reprod. 76, 259–267.
| Placental growth throughout the last two-thirds of pregnancy in sheep: vascular development and angiogenic factor expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtrc%3D&md5=b431fecf6c21e5c63737c78a63be453aCAS |
Camacho, L. E., Lekatz, L. A., VanEnom, M. L., Schauer, C. S., Maddock Carlin, K. R., and Vonnahme, K. A. (2010). Effects of maternal metabolizable protein supplementation in late gestation on uterine and umbilical blood flows in sheep. J. Anim. Sci. 88, 106.
Camacho, L. E., Lemley, C. O., Neville, B. W., Dahlen, C. R., Lardy, G. P., and Vonnahme, K. A. (2011). Effects of realimentation after nutrient restriction during early to mid-gestation on uterine blood flow in pregnant beef cows. J. Anim. Sci. 89, 339..
Chandler, K. D., Leury, B. J., Bird, A. R., and Bell, A. W. (1985). Effects of undernutrition and exercise during late pregnancy on uterine, fetal, and uteroplacental metabolism in the ewe. Br. J. Nutr. 53, 625–635.
| Effects of undernutrition and exercise during late pregnancy on uterine, fetal, and uteroplacental metabolism in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlKls7c%3D&md5=f645ebc57d3f43069e1344086d1f544eCAS |
Dantzer, V. (1984). Scanning electron microscopy of exposed surfaces of the porcine placenta. Acta Anat. (Basel) 118, 96–106.
| Scanning electron microscopy of exposed surfaces of the porcine placenta.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7kvFKgsQ%3D%3D&md5=97938b87ef45cf7118ce986c4af74ea2CAS |
Foote, W. C., Pope, A. L., Earl, C. R., Chapman, A. B., and Casida, L. E. (1958). Reproduction in the yearling ewe as affected by breed and sequence of feeding levels: II. Effects on fetal development. J. Anim. Sci. 18, 463–474.
Ford, S. P. (1999). Cotyledonary placenta. In ‘Encyclopedia of Reproduction’. (Eds E. Knobil, J. Neill.) pp. 730–738. (Academic Press: Salt Lake City, UT.)
Fowden, A. L., Ward, J. W., Wooding, F. P. B., Forhead, A. J., and Constancia, M. (2006). Programming placental nutrient transport capacity. J. Physiol. 572, 5–15.
| 1:CAS:528:DC%2BD28Xkt1GhtLw%3D&md5=da403a36cc4f302a08f22d6f2b3a902cCAS |
Garris, D. R., Kasperek, G. J., Overton, S. V., and Alligood, G. R., (1985). Effects of exercise on fetal-placental growth and uteroplacental blood flow in the rat. Biol. Neonate 47, 223–229.
| Effects of exercise on fetal-placental growth and uteroplacental blood flow in the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3gtVWhtQ%3D%3D&md5=90b1a63d3a3737870d5893d1bf55c53fCAS |
Godfrey, K. M., and Barker, D. J. (2000). Fetal nutrition and adult disease. Am. J. Clin. Nutr. 71, 1344S–1352S.
| 1:CAS:528:DC%2BD3cXivFymurY%3D&md5=d8bfba03dae0537e3d9a50fac73f9c65CAS |
Hammer, C. J., Thorson, J. F., Meyer, A. M., Redmer, D. A., Luther, J. S., Neville, T. L., Reed, J. J., Reynolds, L. P., Caton, J. S., and Vonnahme, K. A. (2011). Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs. J. Anim. Sci , .
| Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs.Crossref | GoogleScholarGoogle Scholar |
Harris, E. K., Bartling, B. J., Neville, T. L., Kirsch, J. D., Magolski, J. D., Berg, E. P., and Vonnahme, K. A. (2010). Impact of maternal exercise on maternal body composition, fetal growth, and umbilical blood flow in the pig. J. Anim. Sci. 88, 27..
Heasman, L., Clarke, L., Firth, K., Stephenson, T., and Symonds, M. E. (1998). Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr. Res. 44, 546–551.
| Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslCiurc%3D&md5=18581205cc5ea98cde04c394359fc61bCAS |
Houghton, P. E., Mottola, M. F., Plust, J. H., and Schachter, C. L. (2000). Effect of maternal exercise on fetal and placental glycogen storage in the mature rat. Can. J. Appl. Physiol. 25, 443–452.
| Effect of maternal exercise on fetal and placental glycogen storage in the mature rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlelsw%3D%3D&md5=9ee3548919a006500967ea5849de4ee3CAS |
Knight, J. W., Bazer, F. W., Thatcher, W. W., Franke, D. E., and Wallace, H. D. (1977). Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts: interrelations among hormonal status, placental development, fetal fluids and fetal growth. J. Anim. Sci. 44, 620–637.
| 1:CAS:528:DyaE2sXhs1ylsbc%3D&md5=70e81515ca40c868a9da8025a6655aceCAS |
Kwon, H., Ford, S. P., Bazer, F. W., Spencer, T. E., Nathanielsz, P. W., Nijland, M. J., Hess, B. W., and Wu, G. (2004). Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol. Reprod. 71, 901–908.
| Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejurY%3D&md5=6185f35b5347a213f8e5a4dd1bfc94e9CAS |
Lammers, P. J., Honeyman, M. S., Mabry, J. W., and Harmon, D. M. (2007). Performance of gestating sows in bedded hooped barns and confinement stalls. J. Anim. Sci. 85, 1311–1317.
| Performance of gestating sows in bedded hooped barns and confinement stalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksF2huro%3D&md5=81778feae8abd83e8b12195f2c541ae8CAS |
Larson, D. M., Martin, J. L., Adams, D. C., and Funston, R. N. (2009). Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. J. Anim. Sci. 87, 1147–1155.
| Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislaqs74%3D&md5=f26e1dba1a7b0518a82eb7612eab3244CAS |
Lekatz, L. A., Caton, J. S., Taylor, J. B., Reynolds, L. P., Redmer, D. A., and Vonnahme, K. A. (2010a). Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: Impacts on maternal endocrine status and placental characteristics. J. Anim. Sci. 88, 955–971.
| Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: Impacts on maternal endocrine status and placental characteristics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7jsVSjtA%3D%3D&md5=9928bdb4438de05bfaef83f3ee72aeb6CAS |
Lekatz, L. A., Van Emon, M. L., Shukla, P. K., O’Rourke, S. T., Schauer, C. S., Carlin, K. M., and Vonnahme, K. A. (2010b). Influence of metabolizable protein supplementation during late gestation on vasoreactivity of maternal and fetal placental arteries in sheep. J. Anim. Sci. 88, 869–870.
Lemley, C. O., Meyer, A. M., Camacho, L. E., Neville, T. L., Newman, D. J., Caton, J. S., and Vonnahme, K. A. (2011). Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction (IUGR). Am. J. Physiol., , .
Lotgering, F. K., Gilbert, R. D., and Longo, L. D. (1983a). Exercise responses in pregnant sheep: oxygen consumption, uterine blood flow, and blood volume. J. Appl. Physiol. 55, 834–841.
| 1:STN:280:DyaL2c%2FjtFymsQ%3D%3D&md5=6ccdd48c1b384f8c9240a80a4c35d55aCAS |
Lotgering, F. K., Gilbert, R. D., and Longo, L. D. (1983b). Exercise responses in pregnant sheep: blood gases, temperatures, and fetal cardiovascular system. J. Appl. Physiol. 55, 842–850.
| 1:STN:280:DyaL2c%2FjtFymtg%3D%3D&md5=3b19b598f22fe3fd962cd3a99d35dca2CAS |
Martin, J. L., Vonnahme, K. A., Adams, D. C., Lardy, G. P., and Funston, R. N. (2007). Effects of dam nutrition on growth and reproductive performance of heifer calves. J. Anim. Sci. 85, 841–847.
| Effects of dam nutrition on growth and reproductive performance of heifer calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wktbg%3D&md5=4f5804912bffd6ecd7827ca30332b3a7CAS |
McMullen, S., Osgerby, J. C., Milne, J. S., Wallace, J. M., and Wathes, D. C. (2005). The effects of acute nutrient restriction in the mid-gestational ewe on maternal and fetal nutrient status, the expression of placental growth factors and fetal growth. Placenta 26, 25–33.
| The effects of acute nutrient restriction in the mid-gestational ewe on maternal and fetal nutrient status, the expression of placental growth factors and fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1Grug%3D%3D&md5=b053592d44739bfc0cd4f32c92295524CAS |
McMurray, R. G., Mottola, M. F., Wolfe, L. A., Artal, R., Millar, L., and Pivarnik, J. M. (1993). Recent advances in understanding maternal and fetal responses to exercise. Med. Sci. Sports Exerc. 25, 1305–1321.
| Recent advances in understanding maternal and fetal responses to exercise.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ltVamuw%3D%3D&md5=4b0dd4d93a99a375385774c776495e58CAS |
Meschia, G. (1983). Circulation to female reproductive organs. In ‘Handbook of Physiology’. (Eds J. T. Shephard, F. M. Abboud.) pp. 241–269. (American Physiological Society: Bethesda.)
Meyer, A. M., Reed, J. J., Neville, T. L., Taylor, J. B., Hammer, C. J., Reynolds, L. P., Redmer, D. A., Vonnahme, K. A., and Caton, J. S. (2010). Effects of nutritional plane and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium. J. Anim. Sci. 88, 1786–1800.
| Effects of nutritional plane and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVWrsrg%3D&md5=d4852bcf59bc83f7120797badafd57e3CAS |
Patten, B. M. (1964). ‘Foundations of Embryology.’ 2nd edn. (McGraw-Hill: New York.)
Ramsey, E. M. (1982). ‘The Placenta, Human and Animal.’ (Praeger: New York.)
Reynolds, L. P., and Redmer, D. A. (1995). Utero-placental vascular development and placental function. J. Anim. Sci. 73, 1839–1851.
| 1:CAS:528:DyaK2MXmtV2isbg%3D&md5=8efce98d8f4e7464e9f9477bb386969cCAS |
Reynolds, L. P., and Redmer, D. A. (2001). Angiogenesis in the placenta. Biol. Reprod. 64, 1033–1040.
| Angiogenesis in the placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1artbk%3D&md5=2e7718efc3b5e4a1ef1c663967251c13CAS |
Reynolds, L. P., Ferrell, C. L., Robertson, D. A., and Klindt, J. (1990). Growth hormone, insulin and glucose concentrations in bovine fetal and maternal plasmas at several stages of gestation. J. Anim. Sci. 68, 725–733.
| 1:CAS:528:DyaK3cXhsFait7o%3D&md5=f7409462c58d46abd0c112b58d643897CAS |
Reynolds, L. P., Borowicz, P., Vonnahme, K. A., Johnson, M. L., Grazul-Bilska, A. T., Wallace, J. M., Caton, J. S., and Redmer, D. A. (2005). Animal models of placental angiogenesis. Placenta 26, 689–708.
| Animal models of placental angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSmsbrJ&md5=2646f6ac47b3ce9f156bd65a5da99147CAS |
Reynolds, L. P., Caton, J. S., Redmer, D. A., Grazul-Bilska, A. T., Vonnahme, K. A., Borowicz, P. P., Luther, J. S., Wallace, J. M., Wu, G., and Spencer, T. E. (2006). Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol. 572, 51–58.
| 1:CAS:528:DC%2BD28Xkt1GhtLk%3D&md5=dd57f8f7077999db398847cd6da762e2CAS |
Richter, H. G., Hansell, J. A., Raut, S., and Giussani, D. A. (2009). Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res. 46, 357–364.
| Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy.Crossref | GoogleScholarGoogle Scholar |
Robinson, J., Chidzanja, S., Kind, K., Lok, F., Owens, P., and Owen, J. (1995). Placental control of fetal growth. Reprod. Fertil. Dev. 7, 333–344.
| Placental control of fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287oslCltA%3D%3D&md5=fd81db14f055be7893d5a02c7d91e422CAS |
Satterfield, M. C., Bazer, F. W., Spencer, T. E., and Wu, G. (2010). Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J. Nutr. 140, 251–258.
| Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSlsLo%3D&md5=14a74983d5b6d6fe824b31dfb3290902CAS |
Stalker, L. A., Adams, D. C., Klopfenstein, T. J., Feuz, D. M., and Funston, R. N. (2006). Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 84, 2582–2589.
| Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGku7s%3D&md5=27f136267c940ec27abd5b6d7043e656CAS |
Stegeman, J. H. J. (1974). Placental development in the sheep and its relation to fetal development. Bijdragen tot de dierkunde 44, 3–72.
Swanson, T. J., Hammer, C. J., Luther, J. S., Carlson, D. B., Taylor, J. B., Redmer, D. A., Neville, T. L., Reed, J. J., Reynolds, L. P., Caton, J. S., and Vonnahme, K. A. (2008). Effects of plane of Nutrition and selenium supplementation on colostrum quality and mammary development in pregnant ewe lambs. J. Anim. Sci. 86, 2415–2423.
| Effects of plane of Nutrition and selenium supplementation on colostrum quality and mammary development in pregnant ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFansbvN&md5=af25852eae51ce39e86e6ed9e1c6d060CAS |
Vonnahme, K. A., Wilson, M. E., and Ford, S. P. (2001). Relationship between placental vascular endothelial growth factor expression and placental/endometrial vascularity in the pig. Biol. Reprod. 64, 1821–1825.
| Relationship between placental vascular endothelial growth factor expression and placental/endometrial vascularity in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgtLo%3D&md5=1f7f6fe0388aa2a6ea02622732c909e4CAS |
Vonnahme, K. A., Ford, S. P., Nijland, M. J., and Reynolds, L. P. (2004a). Alteration in cotyledonary (COT) vascular responsiveness to angiotensin II (ANG II) in beef cows undernourished during early pregnancy. Biol. Reprod. 70, 110.
Vonnahme, K. A., Reynolds, L. P., Nijland, M. J., and Ford, S. P. (2004b). Impacts of undernutrition during early to mid gestation on basal vascular tone of the cotyledonary and caruncular arterial beds in the bovine placentome. J. Soc. Gynecol. Investig. 11, 222A..
Vonnahme, K. A., Zhu, M. J., Borowicz, P. P., Geary, T. W., Hess, B. W., Reynolds, L. P., Caton, J. S., Means, W. J., and Ford, S. P. (2007). Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome. J. Anim. Sci. 85, 2464–2472.
| Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSjtrvO&md5=d75e013f84f9cb9519092a5d7a2b3b3bCAS |
Vonnahme, K. A., Lemley, C. O., Camacho, L. E., Lekatz, L. A., Redmer, D. A., Reynolds, L. P., and Caton, J. S. (2011). Placental programming: how the maternal environment can impact placental growth and function. J. Anim. Sci. 89, 443.
Vosatka, R. J., Hassoun, P. M., and Harvey-Wilkes, K. B. (1998). Dietary l-arginine prevents fetal growth restriction in rats. Am. J. Obstet. Gynecol. 178, 242–246.
| Dietary l-arginine prevents fetal growth restriction in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKjt7g%3D&md5=e576664f0a58be4e4e81d4fef27ef331CAS |
Wallace, L. R. (1948). The growth of lambs before and after birth in relation to the level of nutrition. J. Agric. Sci., Cambridge. 38, 243–302.
| The growth of lambs before and after birth in relation to the level of nutrition.Crossref | GoogleScholarGoogle Scholar |
Wallace, J. M., Bourke, D. A., and Aitken, R. P. (1999). Nutrition and fetal growth: paradoxical effects in the overnourished adolescent sheep. J. Reprod. Fertil. Suppl. 54, 385–399.
| 1:CAS:528:DyaK1MXnslSit7s%3D&md5=88313aa17e448311abddfbb167d4ede2CAS |
Wu, G., Bazer, F. W., Wallace, J. M., and Spencer, T. E. (2006). Board invited review. Intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.
| Board invited review. Intrauterine growth retardation: implications for the animal sciences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGktLs%3D&md5=ffcda68a2f8946e672593f7e72d5c2eaCAS |
Zhu, M. J., Du, M., Hess, B. W., Means, W. J., Nathanielsz, P. W., and Ford, S. P. (2007). Maternal nutrient restriction upregulates growth signaling pathway in the cotyledonary artery of cow placentomes. Placenta 28, 361–368.
| Maternal nutrient restriction upregulates growth signaling pathway in the cotyledonary artery of cow placentomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFGmt7o%3D&md5=8bfd325d0c18cbb7b0edf8d824e45be2CAS |