Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The role of fatty acids in oocyte and early embryo development

Paul J. McKeegan A and Roger G. Sturmey A B
+ Author Affiliations
- Author Affiliations

A Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.

B Corresponding author. Email: roger.sturmey@hyms.ac.uk

Reproduction, Fertility and Development 24(1) 59-67 https://doi.org/10.1071/RD11907
Published: 6 December 2011

Abstract

Growing evidence suggests that endogenous and exogenous fatty acids play diverse roles in developing mammalian oocytes and early embryos. In this review, we describe some of the regulatory roles of fatty acids in early development, in addition to their metabolic functions. We focus initially on the provision of individual fatty acids, and then discuss how these might affect metabolism, oxidative stress, membrane composition, cell signalling events and gene expression. We propose that ongoing research should focus on physiologically relevant ratios and combinations of fatty acids, rather than isolated individual fatty acids, as their combined roles are both subtle and complex. Changing the ratio of specific fatty acids in the diet of animal models, and in vitro culture medium can cause significant dysregulation of cellular processes and development, an issue that extends to human fertility.


References

Aardema, H., Vos, P. L. A. M., Lolicato, F., Roelen, B. A. J., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls74%3D&md5=9bf74be82533275f9a36a6981f11dbebCAS | 21311036PubMed |

Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur4%3D&md5=282de322d0478bb4a166f2728f55505bCAS | 11774376PubMed |

Adamiak, S. J., Powell, K., Rooke, J. A., Webb, R., and Sinclair, K. D. (2006). Body composition, dietary carbohydrates and fatty acids determine post-fertilisation development of bovine oocytes in vitro. Reproduction 131, 247–258.
Body composition, dietary carbohydrates and fatty acids determine post-fertilisation development of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsL8%3D&md5=4778e8f58060931ab1c1a586cd92a136CAS | 16452718PubMed |

Al Darwich, A., Perreau, C., Petit, M. H., Papillier, P., Dupont, J., Guillaume, D., Mermillod, P., and Guignot, F. (2010). Effect of PUFA on embryo cryoresistance, gene expression and AMPKα phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat. 93, 30–36.
Effect of PUFA on embryo cryoresistance, gene expression and AMPKα phosphorylation in IVF-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvV2ht7Y%3D&md5=1f860f243e8586a5f81b8bcf5615e266CAS | 20601073PubMed |

Barceló-Fimbres, M., and Seidel, G. E. (2011). Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts. Theriogenology 75, 434–444.
Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts.Crossref | GoogleScholarGoogle Scholar | 21111465PubMed |

Bordoni, A., Di Nunzio, M., Danesi, F., and Biagi, P. (2006). Polyunsaturated fatty acids: From diet to binding to PPARs and other nuclear receptors. Genes & Nutrition 1, 95–106.
| 1:CAS:528:DC%2BD28XhtlCku7nI&md5=f70c0140c71f058daecef2c7e5cbeadbCAS |

Braissant, O., and Wahli, W. (1998). Differential expression of peroxisome proliferator-activated receptor-α, -β, and -γ during rat embryonic Dev. Endocrinol. 139, 2748–2754.
Differential expression of peroxisome proliferator-activated receptor-α, -β, and -γ during rat embryonicCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFSlur8%3D&md5=df5a695a169b3ab0f590c6ec77929f9eCAS |

Brinster, R. L. (1968a). In vitro culture of mammalian embryos. J. Anim. Sci. 27, 1–14.
| 5212490PubMed |

Brinster, R. L. (1968b). Lactate dehydrogenase activity in the oocytes of mammals. J. Reprod. Fertil. 17, 139–146.
Lactate dehydrogenase activity in the oocytes of mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXpslCj&md5=20cbe20768226ecf62cf3ff4cc2cf1c2CAS | 4973135PubMed |

Brinster, R. L. (1969). Incorporation of carbon from glucose and pyruvate into the preimplantation mouse embryo. Exp. Cell Res. 58, 153–158.
Incorporation of carbon from glucose and pyruvate into the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXlt1KksA%3D%3D&md5=bee479f8c3ade9dd1f71ed5d280bc927CAS | 5404061PubMed |

Brinster, R. L. (1971). Oxidation of pyruvate and glucose by oocytes of the mouse and rhesus monkey. J. Reprod. Fertil. 24, 187–191.
Oxidation of pyruvate and glucose by oocytes of the mouse and rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktlagu7w%3D&md5=465291dd51c1078d3d300530aff3577dCAS | 4994572PubMed |

Brison, D. R., Houghton, F. D., Falconer, D., Roberts, S. A., Hawkhead, J., Humpherson, P. G., Lieberman, B. A., and Leese, H. J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324.
Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1OmsrY%3D&md5=1dc4507ac774b556f81a7535b1f8dc88CAS | 15298971PubMed |

Brown, M. S., and Goldstein, J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFWisb8%3D&md5=e7dda08495791ea87667c1c7e215fcdbCAS | 9150132PubMed |

Chakravarthy, M. V., Zhu, Y., Wice, M. B., Coleman, T., Pappan, K. L., Marshall, C. A., McDaniel, M. L., and Semenkovich, C. F. (2008). Decreased fetal size is associated with β-cell hyperfunction in early life and failure with age. Diabetes 57, 2698–2707.
Decreased fetal size is associated with β-cell hyperfunction in early life and failure with age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Kntr0%3D&md5=e2a8b8401d82ad8657d1b56ea73ca1d0CAS | 18591393PubMed |

Chason, R. J., Csokmay, J., Segars, J. H., DeCherney, A. H., and Armant, D. R. (2011). Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol. Metab. 22, 412–420.
Environmental and epigenetic effects upon preimplantation embryo metabolism and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eit7rL&md5=0591d059e2195ad35a923f83bc6bdeceCAS | 21741268PubMed |

Conaghan, J., Handyside, A. H., Winston, R. M. L., and Leese, H. J. (1993). Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99, 87–95.
Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCg&md5=de7731378657cce8cf4dceb4d989535dCAS | 8283458PubMed |

Coull, G., Speake, B., Staines, M., Broadbent, P., and McEvoy, T. (1998). Lipid and fatty acid composition of zona-intact sheep oocytes. Theriogenology 49, 179.
Lipid and fatty acid composition of zona-intact sheep oocytes.Crossref | GoogleScholarGoogle Scholar |

Coyne, G. S., Kenny, D. A., Childs, S., Sreenan, J. M., and Waters, S. M. (2008). Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 70, 772–782.
Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVamt7%2FK&md5=5973675f0284c160bafdb6c597daeb17CAS | 18582926PubMed |

Cran, D. G. (1985). Qualitative and quantitative structural changes during pig oocyte maturation. J. Reprod. Fertil. 74, 237–245.
Qualitative and quantitative structural changes during pig oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1GhsLs%3D&md5=c63a6e857512c5ae60bf44d283824204CAS | 4020770PubMed |

Cui, Y., Miyoshi, K., Claudio, E., Siebenlist, U. K., Gonzalez, F. J., Flaws, J., Wagner, K.-U., and Hennighausen, L. (2002). Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J. Biol. Chem. 277, 17830–17835.
Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVCntrw%3D&md5=dbef9624dd8c22cf71b1c64e202931d3CAS | 11884400PubMed |

Desvergne, B., and Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFalsLo%3D&md5=b34420cfbaa614d89fedda70078f5c5eCAS | 10529898PubMed |

Downs, S. M. (2010). Regulation of the G2/M transition in rodent oocytes. Mol. Reprod. Dev. 77, 566–585.
Regulation of the G2/M transition in rodent oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsL8%3D&md5=67cff6672b48e194e1e852c0162b70d9CAS | 20578061PubMed |

Downs, S. M., Mosey, J. L., and Klinger, J. (2009). Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol. Reprod. Dev. 76, 844–853.
Fatty acid oxidation and meiotic resumption in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleht7c%3D&md5=eade76da3a7fc8b2413f655a754df476CAS | 19455666PubMed |

Dunning, K. R., Cashman, K., Russell, D. L., Thompson, J. G., Norman, R. J., and Robker, R. L. (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918.
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfN&md5=1ccb40aa6e9f3c498d9df62ea3805fefCAS | 20686180PubMed |

Duvnjak, M., Lerotić, I., Barsić, N., Tomasić, V., Virović Jukić, L., and Velagić, V. (2007). Pathogenesis and management issues for non-alcoholic fatty liver disease. World J. Gastroenterol. 13, 4539–4550.
| 1:CAS:528:DC%2BD2sXhtFGksLfL&md5=5fc98b1c0b53cad63b962afb729ac23fCAS | 17729403PubMed |

Favetta, L. A., St. John, E. J., King, W. A., and Betts, D. H. (2007). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med. 42, 1201–1210.
High levels of p66shc and intracellular ROS in permanently arrested early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGhtb0%3D&md5=f3dcd9bb3b7fbf553056e7a3d3090664CAS | 17382201PubMed |

Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbc%3D&md5=5534fc675e43007177b78df7750032efCAS | 10615263PubMed |

Ferguson, E. M., and Leese, H. J. (2006). A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 73, 1195–1201.
A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFahtr0%3D&md5=e1849bb61d288c232d9253f14583bc56CAS | 16804881PubMed |

Ferreira, C. R., Saraiva, S. A., Catharino, R. R., Garcia, J. S., Gozzo, F. C., Sanvido, G. B., Santos, L. F. A., Lo Turco, E. G., Pontes, J. H. F., Basso, A. C., Bertolla, R. P., Sartori, R., Guardieiro, M. M., Perecin, F., Meirelles, F. V., Sangalli, J. R., and Eberlin, M. N. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–1227.
Single embryo and oocyte lipid fingerprinting by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlWktb0%3D&md5=e2b9d2c386cc3b4461e22fb7a9b97debCAS | 19965589PubMed |

Flynn, T. J., and Hillman, N. (1980). The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J. Embryol. Exp. Morphol. 56, 157–168.
| 1:CAS:528:DyaL3cXktVClurg%3D&md5=fc5f4a2e463aad92ea78147e1b5c9d0dCAS | 7400740PubMed |

Gardner, D. K., and Leese, H. J. (1986). Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum. Reprod. 1, 25–27.
| 1:CAS:528:DyaL28Xhs1GqsLc%3D&md5=bdb786e9123f5df66e4d3ae1aedafce9CAS | 3455417PubMed |

Gardner, D. K., Wale, P. L., Collins, R., and Lane, M. (2011). Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum. Reprod. , .
Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome.Crossref | GoogleScholarGoogle Scholar | 21784737PubMed |

Guraya, S. S. (1965). A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J. Exp. Zool. 160, 123–135.
A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287jvFeitA%3D%3D&md5=32bec20b142b678b233f2c2309a8389aCAS | 5894324PubMed |

Haggarty, P., Wood, M., Ferguson, E., Hoad, G., Srikantharajah, A., Milne, E., Hamilton, M., and Bhattacharya, S. (2006). Fatty acid metabolism in human preimplantation embryos. Hum. Reprod. 21, 766–773.
Fatty acid metabolism in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Sks7w%3D&md5=b48c4a2115046cc57f3f773cf173dff4CAS | 16311299PubMed |

Hancock, J. T., Desikan, R., and Neill, S. J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29, 345–349.
Role of reactive oxygen species in cell signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslemsro%3D&md5=642b8c085fd9f25909af5dc9276f6588CAS | 11356180PubMed |

Harvey, K. A., Walker, C. L., Pavlina, T. M., Xu, Z., Zaloga, G. P., and Siddiqui, R. A. (2010a). Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin. Nutr. 29, 492–500.
Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFOqsbw%3D&md5=6857c0b50af509ceccbb523d6a3036fdCAS | 19926177PubMed |

Harvey, K. A., Walker, C. L., Xu, Z., Whitley, P., Pavlina, T. M., Hise, M., Zaloga, G. P., and Siddiqui, R. A. (2010b). Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J. Lipid Res. 51, 3470–3480.
Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWitLrE&md5=eb8eee6315a15b5d6db9bdd7b0981d72CAS | 20852092PubMed |

Homa, S. T., and Brown, C. A. (1992). Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J. Reprod. Fertil. 94, 153–160.
Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslWjtLs%3D&md5=92657cc8cff1236c096728d018fc5887CAS | 1552477PubMed |

Homa, S. T., Racowsky, C., and McGaughey, R. W. (1986). Lipid analysis of immature pig oocytes. J. Reprod. Fertil. 77, 425–434.
Lipid analysis of immature pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFamtrs%3D&md5=0c810907ab0c52f97192d02a86b72e76CAS | 3735242PubMed |

Houghton, F. D., Thompson, J. G., Kennedy, C. J., and Leese, H. J. (1996). Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485.
Oxygen consumption and energy metabolism of the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFGrtLY%3D&md5=ceb536d182a53ae97f378ccadfa57892CAS | 8844690PubMed |

Hugentobler, S. A., Humpherson, P. G., Leese, H. J., Sreenan, J. M., and Morris, D. G. (2008). Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev. 75, 496–503.
Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrw%3D&md5=670ad9bb9a3def5722e1061db940f93eCAS | 17926343PubMed |

Hughes, J., Kwong, W. Y., Li, D., Salter, A. M., Lea, R. G., and Sinclair, K. D. (2011). Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction 141, 105–118.
Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehs7k%3D&md5=0b79c84779077795a1a17b116a361b17CAS | 21045166PubMed |

Iritani, A., Gomes, W. R., and Vandemark, N. L. (1969). Secretion rates and chemical composition of oviduct and uterine fluids in ewes. Biol. Reprod. 1, 72–76.
Secretion rates and chemical composition of oviduct and uterine fluids in ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvFKjur0%3D&md5=02436562a270e45518532166bd496f8bCAS | 5408687PubMed |

Iritani, A., Nishikawa, Y., Gomes, W. R., and VanDemark, N. L. (1971). Secretion rates and chemical composition of oviduct and uterine fluids in rabbits. J. Anim. Sci. 33, 829–835.
| 1:CAS:528:DyaE38XksVeluw%3D%3D&md5=487703a3feb0bded156a863f9cc5ffb8CAS | 5106442PubMed |

Iritani, A., Sato, E., and Nishikawa, Y. (1974). Secretion rates and chemical composition of oviduct and uterine fluids in sows. J. Anim. Sci. 39, 582–588.
| 1:CAS:528:DyaE2MXktFWqsQ%3D%3D&md5=c293c1e7bda5d8a52f7ead7cd74423b1CAS | 4370355PubMed |

Johnson, M. H., and Nasresfahani, M. H. (1994). Radical solutions and cultural problems: Could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16, 31–38.
Radical solutions and cultural problems: Could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFGhu7c%3D&md5=88d8e39970fa1221eed47001017b117aCAS | 8141805PubMed |

Jungheim, E. S., Louden, E. D., Chi, M. M.-Y., Frolova, A. I., Riley, J. K., and Moley, K. H. (2011). Preimplantation exposure of mouse embryos to palmitic acid results in fetal growth restriction followed by catch-up growth in the offspring. Biol. Reprod. , .
Preimplantation exposure of mouse embryos to palmitic acid results in fetal growth restriction followed by catch-up growth in the offspring.Crossref | GoogleScholarGoogle Scholar | 21653893PubMed |

Kane, M. T. (1979). Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol. Reprod. 20, 323–332.
Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitVWntLw%3D&md5=f22e16cc16b85d54b477f7e95f8f5717CAS | 572233PubMed |

Khandoker, M. A. M. Y., Tsujii, H., and Karasawa, D. (1997). Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow. Asian Australas. J. Anim. Sci. 10, 523–527.
| 1:CAS:528:DyaK2sXns1ynt70%3D&md5=ce199512a644a998919eb330e0008c64CAS |

Khandoker, M. A. M. Y., Tsujii, H., and Karasawa, D. (1998). A kinetic study of fatty acid composition of embryos, oviductal and uterine fluids in the rabbit. Asian Australas. J. Anim. Sci. 11, 60–64.
| 1:CAS:528:DyaK1cXhsVGqur0%3D&md5=ca2c8799377b62843f206f6b142b748aCAS |

Korn, B. S., Shimomura, I., Bashmakov, Y., Hammer, R. E., Horton, J. D., Goldstein, J. L., and Brown, M. S. (1998). Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N). J. Clin. Invest. 102, 2050–2060.
Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFKh&md5=7ff0d067dab05d735f5101c88c142365CAS | 9854040PubMed |

Kruip, T. A. M., Cran, D. G., van Beneden, T. H., and Dieleman, S. J. (1983). Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 8, 29–47.
Structural changes in bovine oocytes during final maturation in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvVyisLc%3D&md5=b3b5f44bd1b43f5f8a9593e31c00e83bCAS |

Leese, H. J., Hooper, M. A. K., Edwards, R. G., and Ashwood-Smith, M. J. (1986). Uptake of pyruvate by early human embryos determined by a non-invasive technique. Hum. Reprod. 1, 181–182.
| 1:CAS:528:DyaL28Xktlyls78%3D&md5=4dd89d6cab2940a5ffa132ed92504388CAS | 3624425PubMed |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7g%3D&md5=c21cded3bdd9da3b49edff40b86d0b2fCAS | 18154692PubMed |

Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., and Kliewer, S. A. (1997). Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410.
Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFeltLc%3D&md5=bcab255fcf506e90ab85899f1d28a7c4CAS | 9013583PubMed |

Lequarré, A.-S., Feugang, J.-M., Malhomme, O., Donnay, I., Massip, A., Dessy, F., and Van Langendonckt, A. (2001). Expression of Cu/Zn and Mn superoxide dismutases during bovine embryo development: Influence of in vitro culture. Mol. Reprod. Dev. 58, 45–53.
Expression of Cu/Zn and Mn superoxide dismutases during bovine embryo development: Influence of in vitro culture.Crossref | GoogleScholarGoogle Scholar | 11144220PubMed |

Leroy, J. L. M. R., Genicot, G., Donnay, I., and Van Soom, A. (2005a). Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod. Domest. Anim. 40, 76–78.
Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FivVyjsg%3D%3D&md5=08bd82391f338983443fb56af3e9bd7dCAS |

Leroy, J. L. M. R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005b). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7rJ&md5=28b8e4b714ca8128dba0a3e5acb8b0b5CAS |

Leroy, J. L. M. R., Opsomer, G., Van Soom, A., Goovaerts, I. G. F., and Bols, P. E. J. (2008a). Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part I The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows. Reprod. Domest. Anim. 43, 612–622.
Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part I The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnksVeqsg%3D%3D&md5=f2b82cadeff433bad456da8441cae648CAS |

Leroy, J. L. M. R., Van Soom, A., Opsomer, G., Goovaerts, I. G. F., and Bols, P. E. J. (2008b). Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod. Domest. Anim. 43, 623–632.
Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnksVeruw%3D%3D&md5=4503c88c0dd97dad4a5f4806fdaf014cCAS |

Leroy, J. L. M. R., Van Hoeck, V., Clemente, M., Rizos, D., Gutierrez-Adan, A., Van Soom, A., Uytterhoeven, M., and Bols, P. E. J. (2010). The effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality. Hum. Reprod. 25, 768–778.
The effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFeitr8%3D&md5=b0f7e6536db7b75d0e41d7a38ffd1f76CAS |

Loewenstein, J. E., and Cohen, A. I. (1964). Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J. Embryol. Exp. Morphol. 12, 113–121.
| 1:CAS:528:DyaF2cXkt1ShtL4%3D&md5=854b75edb060939c310fd0bee666b716CAS | 14155399PubMed |

Lopes, A. S., Lane, M., and Thompson, J. G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum. Reprod. 25, 2762–2773.
Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb7O&md5=f1d7c3de71b82050ca8b4961e82a12d8CAS | 20823113PubMed |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2009). The effect of linolenic acid on bovine oocyte maturation and development. Biol. Reprod. 81, 1064–1072.
The effect of linolenic acid on bovine oocyte maturation and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vL&md5=2c022adf7f43186326e1ff335ba24f5cCAS | 19587335PubMed |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979–988.
Impact of linoleic acid on bovine oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLY%3D&md5=5979f1e8784809f62beb3c3a9a37de36CAS | 20215338PubMed |

Matorras, R., Ruiz, J. I., Mendoza, R., Ruiz, N., Sanjurjo, P., and Rodriguez-Escudero, F. J. (1998). Fatty acid composition of fertilization-failed human oocytes. Hum. Reprod. 13, 2227–2230.
Fatty acid composition of fertilization-failed human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Wjsb4%3D&md5=469637175698ed4132c86e5106857dfaCAS | 9756301PubMed |

McEvoy, T., Coull, G., Broadbent, P., Hutchinson, J., and Speake, B. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=4996e9d6cefc07c983d3541dad5ac072CAS | 10793638PubMed |

Menezo, Y., Renard, J. P., Delobel, B., and Pageaux, J. F. (1982). Kinetic study of fatty acid composition of day 7 to day 14 cow embryos. Biol. Reprod. 26, 787–790.
Kinetic study of fatty acid composition of day 7 to day 14 cow embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFeitrc%3D&md5=c190b165ccb71c0f5f44bc3c146e48b9CAS | 7093400PubMed |

Miyamoto, K., Sato, E. F., Kasahara, E., Jikumaru, M., Hiramoto, K., Tabata, H., Katsuragi, M., Odo, S., Utsumi, K., and Inoue, M. (2010). Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radic. Biol. Med. 49, 674–681.
Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWrsbw%3D&md5=3feb07723b596f13ad18484c5d24d5b8CAS | 20621580PubMed |

Mohan, M., Malayer, J. R., Geisert, R. D., and Morgan, G. L. (2002). Expression patterns of retinoid X receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos. Biol. Reprod. 66, 692–700.
Expression patterns of retinoid X receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitbY%3D&md5=7845bb36bb43a5ba9a024097a874a302CAS | 11870076PubMed |

Moon, Y.-A., Hammer, R. E., and Horton, J. D. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J. Lipid Res. 50, 412–423.
Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlCqtL8%3D&md5=823f35d63fb0fea8e8311c9041d09c7dCAS | 18838740PubMed |

Nagashima, H., Kashiwazaki, N., Ashman, R. J., Grupen, C. G., and Nottle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
Cryopreservation of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslSls7Y%3D&md5=621d4b19db0f1fd15bab1596d196aed9CAS | 7700349PubMed |

Nishikimi, A., Mukai, J., and Yamada, M. (1999). Nuclear translocation of nuclear factor kappa B in early 1-cell mouse embryos. Biol. Reprod. 60, 1536–1541.
Nuclear translocation of nuclear factor kappa B in early 1-cell mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVeiurs%3D&md5=1e51d0c846a7ee5ed9708437e3d1bc90CAS | 10330116PubMed |

Nonogaki, T., Noda, Y., Goto, Y., Kishi, J., and Mori, T. (1994). Developmental blockage of mouse embryos caused by fatty acids. J. Assist. Reprod. Genet. 11, 482–488.
Developmental blockage of mouse embryos caused by fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzlvFOjug%3D%3D&md5=3a62cf96a4db02bd9e93b3ba3c041ae4CAS | 7633171PubMed |

Ntambi, J., and Bené, H. (2001). Polyunsaturated fatty acid regulation of gene expression. J. Mol. Neurosci. 16, 273–278.
Polyunsaturated fatty acid regulation of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlarsrY%3D&md5=ff919bf0e0ec9e81365cc3ece3774f78CAS | 11478382PubMed |

Piomelli, D. (1993). Arachidonic acid in cell signaling. Curr. Opin. Cell Biol. 5, 274–280.
Arachidonic acid in cell signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1ehs7o%3D&md5=40ec298c68f86af25f3b799b908b1255CAS | 7685181PubMed |

Quinn, P., and Whittingham, D. G. (1982). Effect of fatty acids on fertilization and development of mouse embryos in vitro. J. Androl. 3, 440–444.
| 1:CAS:528:DyaL3sXos12gsA%3D%3D&md5=46e70779aad9a2e68229be83583ed15aCAS |

Rees, W. D., McNeil, C. J., and Maloney, C. A. (2008). The roles of PPARs in the fetal origins of metabolic health and disease. PPAR Research 2008, pp. 1–8.

Reis, A., Rooke, J. A., McCallum, G. J., Staines, M. E., Ewen, M., Lomax, M. A., and McEvoy, T. G. (2003). Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod. Fertil. Dev. 15, 275–284.
Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Cgur0%3D&md5=bf1352ea65810ee010cfb864b02c6edbCAS | 14588185PubMed |

Ren, B., Thelen, A. P., Peters, J. M., Gonzalez, F. J., and Jump, D. B. (1997). Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor α. J. Biol. Chem. 272, 26827–26832.
Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor α.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFyrsro%3D&md5=149b2e08f268b47825579a7f4b3da4c7CAS | 9341113PubMed |

Renaville, B., Bacciu, N., Comin, A., Motta, M., Poli, I., Vanini, G., and Prandi, A. (2010). Plasma and follicular fluid fatty acid profiles in dairy cows. Reprod. Domest. Anim. 45, 118–121.
Plasma and follicular fluid fatty acid profiles in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagu7w%3D&md5=2f6e370c4526aab5f63a86247d6b6af2CAS | 19055554PubMed |

Rieger, D., McGowan, L. T., Cox, S. F., Pugh, P. A., and Thompson, J. G. (2002). Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–343.
Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKnt7w%3D&md5=ee27da4b615c37471e144d96f679f2ccCAS | 12467359PubMed |

Sampath, H., and Ntambi, J. M. (2005). Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25, 317–340.
Polyunsaturated fatty acid regulation of genes of lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvF2mtrY%3D&md5=6291c34acd41704ed6b8904fca551d02CAS | 16011470PubMed |

Sata, R., Tsujii, H., Abe, H., Yamashita, S., and Hoshi, H. (1999). Fatty acid composition of bovine embryos cultured in serum-free and serum-containing medium during early embryonic development. J. Reprod. Dev. 45, 97–103.
Fatty acid composition of bovine embryos cultured in serum-free and serum-containing medium during early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFentb4%3D&md5=08be65c9fbb49fe8cb780bd13a374a52CAS |

Scott, L., Berntsen, J., Davies, D., Gundersen, J., Hill, J., and Ramsing, N. (2008). Human oocyte respiration-rate measurement – potential to improve oocyte and embryo selection? Reprod. Biomed. Online 17, 461–469.
Human oocyte respiration-rate measurement – potential to improve oocyte and embryo selection?Crossref | GoogleScholarGoogle Scholar | 18854099PubMed |

Seli, E., Botros, L., Sakkas, D., and Burns, D. H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 90, 2183–2189.
Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 18842260PubMed |

Shehab-El-Deen, M. A., Leroy, J. L. M. R., Maes, D., and Van Soom, A. (2009). Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid. Reprod. Domest. Anim. 44, 140–142.
Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fnslyqtg%3D%3D&md5=daab66b8317a044aa6f4b35b69463ea2CAS | 18992093PubMed |

Shiku, H., Shiraishi, T., Ohya, H., Matsue, T., Abe, H., Hoshi, H., and Kobayashi, M. (2001). Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal. Chem. 73, 3751–3758.
Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Sgtb4%3D&md5=13bac9ae9b565adab539419a352c761cCAS | 11510844PubMed |

Spindler, R. E., Pukazhenthi, B. S., and Wildt, D. E. (2000). Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro. Mol. Reprod. Dev. 56, 163–171.
Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyrtb4%3D&md5=adc3fedea37da293b89b42b59b3f9a87CAS | 10813848PubMed |

Stadtman, E. R., and Levine, R. L. (2000). Protein oxidation. Ann. N. Y. Acad. Sci. 899, 191–208.
| 1:CAS:528:DC%2BD3cXks1ShsL4%3D&md5=94ab7bf4390e41974519dce049e70da9CAS | 10863540PubMed |

Sturmey, R., and Leese, H. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtr4%3D&md5=909ebac0d2348d75ceaeafecb234253bCAS | 12887276PubMed |

Sturmey, R. G., O’Toole, P. J., and Leese, H. J. (2006). Fluorescence resonance energy transfer analysis of mitochondrial : lipid association in the porcine oocyte. Reproduction 132, 829–837.
Fluorescence resonance energy transfer analysis of mitochondrial : lipid association in the porcine oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2isw%3D%3D&md5=c17b2984a3f8cdf72a8c849e47788d4aCAS | 17127743PubMed |

Sturmey, R. G., Hawkhead, J. A., Barker, E. A., and Leese, H. J. (2009a). DNA damage and metabolic activity in the preimplantation embryo. Hum. Reprod. 24, 81–91.
DNA damage and metabolic activity in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbnF&md5=a6dc47f1100197677c57199bf89288b9CAS | 18835872PubMed |

Sturmey, R. G., Reis, A., Leese, H. J., and McEvoy, T. G. (2009b). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 19660080PubMed |

Tabor, D. E., Kim, J. B., Spiegelman, B. M., and Edwards, P. A. (1998). Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J. Biol. Chem. 273, 22052–22058.
Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOqt7s%3D&md5=75b50544dd43117711a5183a27ba53d5CAS | 9705348PubMed |

Takahashi, M., Keicho, K., Takahashi, H., Ogawa, H., Schulte, R. M., and Okano, A. (2000). Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology 54, 137–145.
Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVaisrg%3D&md5=54d23b855a7c256d1c93d3321736a3e5CAS | 10990355PubMed |

Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=b8ae8d737eee546b9f8ab994e1df7c7aCAS | 8699414PubMed |

Tsujii, H., Khandoker, M. A. M. Y., and Hamano, K.-i. (2001). Lipid in mammalian embryo development. J. Mamm. Ova Res. 18, 73–80.
Lipid in mammalian embryo development.Crossref | GoogleScholarGoogle Scholar |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E. J., and Leroy, J. L. M. R. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS ONE 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKmsLjM&md5=d10c4e5a786d483250bf4cc218bd9ef9CAS | 21858021PubMed |

Vanholder, T., Leroy, J. L. M. R., Soom, A. V., Opsomer, G., Maes, D., Coryn, M., and Kruif, A. d. (2005). Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim. Reprod. Sci. 87, 33–44.
Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVOju74%3D&md5=ccf9e7fa9c70d01d5526276498cc351dCAS | 15885439PubMed |

Wakefield, S. L., Lane, M., Schulz, S. J., Hebart, M. L., Thompson, J. G., and Mitchell, M. (2008). Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am. J. Physiol. Endocrinol. Metab. 294, E425–E434.
Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ykur0%3D&md5=48cabbc11e7e3dee2ef630564122018fCAS | 18073322PubMed |

Wonnacott, K. E., Kwong, W. Y., Hughes, J., Salter, A. M., Lea, R. G., Garnsworthy, P. C., and Sinclair, K. D. (2010). Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction 139, 57–69.
Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWnug%3D%3D&md5=3d2a14200b87ff901dbaa848b8ed96d8CAS | 19789173PubMed |

Wu, G. Q., Jia, B. Y., Li, J. J., Fu, X. W., Zhou, G. B., Hou, Y. P., and Zhu, S. E. (2011). l-Carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology , .
l-Carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs.Crossref | GoogleScholarGoogle Scholar | 21705056PubMed |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=6918a8b63336ed3ed8b130b96676d538CAS | 9619561PubMed |

Zeron, Y., Sklan, D., and Arav, A. (2002). Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol. Reprod. Dev. 61, 271–278.
Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Ghsw%3D%3D&md5=56b780e0d3692331f8d33b1c656d3885CAS | 11803563PubMed |