Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The fibroblast growth factor family: involvement in the regulation of folliculogenesis

Roberta Nogueira Chaves A D , Maria Helena Tavares de Matos B , José Buratini Jr C and José Ricardo de Figueiredo A
+ Author Affiliations
- Author Affiliations

A Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, 60740-903, CE, Brazil.

B Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, 48902-300, PE, Brazil.

C Department of Physiology, Institute of Biosciences, State University Paulista, Botucatu, 18618-000, SP, Brazil.

D Corresponding author. Email: rncvet@gmail.com

Reproduction, Fertility and Development 24(7) 905-915 https://doi.org/10.1071/RD11318
Submitted: 28 October 2011  Accepted: 7 February 2012   Published: 8 March 2012

Abstract

Several growth factors have been identified as local regulators of follicle development and ovulation. Fibroblast growth factor (FGF) family members are potent mitogens and are involved in cell differentiation, cell migration and angiogenesis in many tissues and organs. In addition to FGF-2, which is the most-studied FGF, other important members are FGF-1, -5, -7, -8, -9 and -10. A number of studies have indicated that FGFs play important roles in regulating the initiation of primordial follicle growth, oocyte and follicle survival, granulosa and theca cell proliferation and differentiation, corpus luteum formation, steroidogenesis and angiogenesis. The purpose of this review is to highlight the importance of the FGFs on mammalian female reproduction, providing a better understanding of the roles of this family in ovarian physiology and female fertility.

Additional keywords: culture medium, development, follicles, ovary, survival.


References

Aharoni, D., Meiri, I., Atzmon, R., Vlodavsky, I., and Amsterdam, A. (1997). Differential effect of components of the extracellular matrix on differentiation and apoptosis. Curr. Biol. 7, 43–51.
Differential effect of components of the extracellular matrix on differentiation and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtValtrg%3D&md5=8d3b8edbd0f823cefa2db398db08b232CAS | 8999995PubMed |

Almeida, A. P., Saraiva, M. V. A., Alves Filho, J. G., Silva, G. M., Goncalves, R. F. B., Brito, I. R., Silva, A. W. B., Lima, A. K. F., Cunha, R. M. S., Silva, J. R. V., and Figueiredo, J. R. (2011). Gene expression and immunolocalisation of fibroblast growth factor 2 in the ovary and its effect on the in vitro culture of caprine preantral ovarian follicles. Reprod. Domest. Anim. , .
| 21883514PubMed |

Amalric, F., Bouche, G., Bonnet, H., Brethenou, P., Roman, A. M., Truchet, I., and Quarto, N. (1994). Fibroblast growth factor-2 (FGF-2) in the nucleus: translocation process and targets. Biochem. Pharmacol. 47, 111–115.
Fibroblast growth factor-2 (FGF-2) in the nucleus: translocation process and targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFertrs%3D&md5=2de770b85e735db739e2e08e2bac1456CAS | 8311835PubMed |

Anderson, E., and Lee, G. Y. (1993). The participation of growth factors in simulating the quiescent, proliferative and differentiative stages of rat granulosa cells grown in a serum-free medium. Tissue Cell 25, 49–72.
The participation of growth factors in simulating the quiescent, proliferative and differentiative stages of rat granulosa cells grown in a serum-free medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1Wisr4%3D&md5=4a4fb89770c441bc15dd7d5a8b459860CAS | 8470094PubMed |

Armstrong, D. G., and Webb, R. (1997). Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins. Rev. Reprod. 2, 139–146.
Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins.Crossref | GoogleScholarGoogle Scholar | 9414477PubMed |

Beenken, A., and Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253.
The FGF family: biology, pathophysiology and therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVShur4%3D&md5=161fca7f08f3696db83087b7f1413206CAS | 19247306PubMed |

Ben-Haroush, A., Abir, R., Aro, A., Jin, S., Kessler-Icekson, G., Feldberg, D., and Fisch, B. (2005). Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses. Fertil. Steril. 84, 1257–1268.
Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtb7N&md5=0dbdeca7d093c5dfc0da88961197dc9bCAS | 16210019PubMed |

Berisha, B., Sinowatz, F., and Schams, D. (2004). Expression and localisation of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Mol. Reprod. Dev. 67, 162–171.
Expression and localisation of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKrsA%3D%3D&md5=c75a768bed0a7712d474fd61342a1d19CAS | 14694431PubMed |

Berisha, B., Steffl, M., Amselgruber, W., and Schams, D. (2006a). Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction 131, 319–329.
Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsLY%3D&md5=f8f31b8b1e44c4921e8e99cc93139da0CAS | 16452725PubMed |

Berisha, B., Welter, H., Shimizu, T., Miyamoto, A., Meyer, H., and Schams, D. (2006b). Expression of fibroblast growth factor 1 (FGF-1) and FGF-7 in mature follicles during the periovulatory period after GnRH in the cow. J. Reprod. Dev. 52, 307–313.
Expression of fibroblast growth factor 1 (FGF-1) and FGF-7 in mature follicles during the periovulatory period after GnRH in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlKisbY%3D&md5=2b428ec123257008aeb2cedb08677aaaCAS | 16415522PubMed |

Braw-Tal, R. (2002). The initiation of follicle growth: the oocyte or the somatic cells? Mol. Cell. Endocrinol. 187, 11–18.
The initiation of follicle growth: the oocyte or the somatic cells?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1SqsL0%3D&md5=7488fdc8643c18dbad97fdbfc297b956CAS | 11988306PubMed |

Buratini, J., Glapinski, V. F., Giometti, I. C., Teixeira, A. B., Costa, I. B., Avellar, M. C., Barros, C. M., and Price, C. A. (2005a). Expression of fibroblastic growth factor-8 and its cognate receptors, fibroblastic growth factor receptor (FGFR)-3c and -4, in fetal bovine preantral follicles. Mol. Reprod. Dev. 70, 255–261.
Expression of fibroblastic growth factor-8 and its cognate receptors, fibroblastic growth factor receptor (FGFR)-3c and -4, in fetal bovine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShurk%3D&md5=3545db914f338495fafdb7f2970cd0d9CAS | 15625702PubMed |

Buratini, J., Teixeira, A. B., Costa, I. B., Glapinski, V. F., Pinto, M. G. L., Giometti, I. C., Barros, C. M., Cao, M., Nicola, E. S., and Price, C. A. (2005b). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles. Reproduction 130, 343–350.
Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3I&md5=730c9612e5bcfbaca375959958cbd36bCAS | 16123241PubMed |

Buratini, J., Pinto, M. G. L., Castilho, A. C., Amorim, R. L., Giometti, I. C., Portela, V. M., Nicola, E. S., and Price, C. A. (2007). Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol. Reprod. 77, 743–750.
Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsb3F&md5=9f0b07e7adc4f768bb8669065c37afa6CAS | 17582010PubMed |

Campbell, W. J., Miller, K. A., and Anderson, T. M. (1992). Expression of fibroblast growth factor receptors by embryonical carcinoma cells and early mouse embryos. In Vitro Cell. Dev. Biol. 28, 61–66.
Expression of fibroblast growth factor receptors by embryonical carcinoma cells and early mouse embryos.Crossref | GoogleScholarGoogle Scholar |

Cao, M., Nicola, E., Portela, V. M., and Price, C. A. (2006). Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinising bovine granulosa cells in vitro. Matrix Biol. 25, 342–354.
Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinising bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWlu7c%3D&md5=ee5a8192b1c1f84f61a3c81b00f2531aCAS | 16806868PubMed |

Castilho, A. C., Giometti, I. C., Berisha, B., Schams, D., Price, C. A., Amorim, R. L., Papa, P. C., and Buratini, J. (2008). Expression of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in the bovine corpus luteum. Mol. Reprod. Dev. 75, 940–945.
Expression of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGht70%3D&md5=7f564a0bda2494f3a98e7fa9e04b70e0CAS | 18163381PubMed |

Chaves, R. N., Lima-Verde, I. B., Celestino, J. J. H., Duarte, A. B. G., Alves, A. M. C. V., Matos, M. H. T., Campello, C. C., Name, K. P. O., Báo, S. N., Buratini, J., and Figueiredo, J. R. (2010). Fibroblast growth factor-10 maintains the survival and promotes the growth of cultured goat preantral follicles. Domest. Anim. Endocrinol. 39, 249–258.
Fibroblast growth factor-10 maintains the survival and promotes the growth of cultured goat preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ersr7I&md5=9a3d4ad31948c2f466d722a287dd0392CAS | 20920782PubMed |

Chen, C., Spencer, T. E., and Bazer, F. W. (2000). Fibroblast growth factor-10: a stromal mediator of epithelial function in the ovine uterus. Biol. Reprod. 63, 959–966.
Fibroblast growth factor-10: a stromal mediator of epithelial function in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFChs7w%3D&md5=d93e118ff44b88e21f7112e17560540bCAS | 10952944PubMed |

Colvin, J. S., Green, R. P., Schmahl, J., Capel, B., and Ornitz, D. M. (2001). Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875–889.
Male-to-female sex reversal in mice lacking fibroblast growth factor 9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVyis70%3D&md5=b4855b61ca68b6f94cacb9c84a425e59CAS | 11290325PubMed |

Cotton, L. M., O’Bryan, M. K., and Hinton, B. T. (2008). Cellular signalling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr. Rev. 29, 193–216.
Cellular signalling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlOhsrs%3D&md5=b786730fd669d562e90a6f47123d734bCAS | 18216218PubMed |

Daphna-Iken, D., Shankar, D. B., Lawshé, A., Ornitz, D. M., Shackleford, G. M., and MacArthur, C. A. (1998). MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene 17, 2711–2717.
MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFCj&md5=867bf9eabaaa27178a8ff9e471e404f8CAS | 9840935PubMed |

Derrar, N., Price, C. A., and Sirard, M. A. (2000). Effect of growth factors and co-culture with ovarian medulla on the activation of primordial follicles in explants of bovine ovarian cortex. Theriogenology 54, 587–598.
Effect of growth factors and co-culture with ovarian medulla on the activation of primordial follicles in explants of bovine ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlylu7Y%3D&md5=e60cd7ebf0355a9609c9f7447368169dCAS | 11071133PubMed |

Detillieux, K. A., Sheikh, F., Kardami, E., and Cattini, P. A. (2003). Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc. Res. 57, 8–19.
Biological activities of fibroblast growth factor-2 in the adult myocardium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslSlsr0%3D&md5=376eca3e7fafdada8809898e289a8113CAS | 12504809PubMed |

Eswarakumar, V. P., Lax, I., and Schlessinger, J. (2005). Cellular signalling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149.
Cellular signalling by fibroblast growth factor receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVOns7k%3D&md5=333db671c1521513750b3c96a74fd1fbCAS | 15863030PubMed |

Faustino, L. R., Rossetto, R., Lima, I. M., Silva, C. M., Saraiva, M. V., Lima, L. F., Silva, A. W., Donato, M. A., Campello, C. C., Peixoto, C. A., Figueiredo, J. R., and Rodrigues, A. P. (2011). Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex. Reprod. Sci. , .
Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 21693780PubMed |

Felmeden, D. C., Blann, A. D., and Lip, G. Y. H. (2003). Angiogenesis: basic pathophysiology and implications for disease. Eur. Heart J. 24, 586–603.
Angiogenesis: basic pathophysiology and implications for disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlWgsrc%3D&md5=f1d88129414ed2f5322061ea2d6d48b3CAS | 12657217PubMed |

Fernig, D. G., and Gallagher, J. T. (1994). Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog. Growth Factor Res. 5, 353–377.
Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVeit70%3D&md5=b895912ed415ca4c9a622d12e73835dcCAS | 7780086PubMed |

Fields, S. D., Hansen, P. J., and Ealy, A. D. (2011). Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology 75, 1466–1475.
Fibroblast growth factor requirements for in vitro development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1KjsLk%3D&md5=c5ce84294c84864c9932d34b741f509bCAS | 21295834PubMed |

Gabler, C., Plath-Gabler, A., Killian, G. J., Berisha, B., and Schams, D. (2004). Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod. Domest. Anim. 39, 321–327.
Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvF2qu78%3D&md5=fa7627b0e8fd093206372144785f2fd9CAS | 15367264PubMed |

Garcia, R. A., Sanchez, M. A., Letelier, C., Garcia, P. P., Sanchez, B., Vilar, M. P., Gonzalez-Bulnes, A., and Flores, J. M. (2006). Changes in fibroblast growth factor-2 in ovine follicle development. Reprod. Domest. Anim. 41, 105.
Changes in fibroblast growth factor-2 in ovine follicle development.Crossref | GoogleScholarGoogle Scholar |

Gospodarowicz, D., Plouet, J., and Fujii, D. K. (1989). Ovarian germinal epithelial cells respond to basic fibroblast growth factor and express its gene: implications for early folliculogenesis. Endocrinology 125, 1266–1276.
Ovarian germinal epithelial cells respond to basic fibroblast growth factor and express its gene: implications for early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVOjur0%3D&md5=911fe69055b09c288d135723fcd7eae3CAS | 2474436PubMed |

Grazul-Bilska, A. T., Redmer, D. A., Killilea, S. D., Kraft, K. C., and Reynolds, L. P. (1992). Production of mitogenic factor(s) by ovine corpora lutea throughout the oestrous cycle. Endocrinology 130, 3625–3632.
Production of mitogenic factor(s) by ovine corpora lutea throughout the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVWgtb8%3D&md5=ce21a9307b018e886f7e42f2ee8908ceCAS | 1375905PubMed |

Gupta, A., Bazer, F. W., and Jaeger, L. A. (1997). Immunolocalisation of acidic and basic fibroblast growth factors in porcine uterine and conceptus tissues. Biol. Reprod. 56, 1527–1536.
Immunolocalisation of acidic and basic fibroblast growth factors in porcine uterine and conceptus tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlKntrw%3D&md5=3f0a0974b5068131e3a2d60211df7543CAS | 9166706PubMed |

Hennig, T., Mogensen, C., Kirsch, J., Pohl, U., and Gloe, T. (2011). Shear stress induces the release of an endothelial elastase: role in integrin α(v)β(3)-mediated FGF-2 release. J. Vasc. Res. 48, 453–464.
Shear stress induces the release of an endothelial elastase: role in integrin α(v)β(3)-mediated FGF-2 release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rurjF&md5=50df517b04d7a3a796208e0db55d0ae5CAS | 21691119PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=0f9b6f0fe43b776d7f08409072e0f775CAS | 16854407PubMed |

Igarashi, M., Finch, P. W., and Aaronson, S. A. (1998). Characterisation of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J. Biol. Chem. 273, 13 230–13 235.
Characterisation of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVGitbg%3D&md5=c3cb176a5a36a2b9a6bcdb6550a4f53cCAS |

Ishii, K., Imamura, T., Iguchi, K., Arase, S., Yoshio, Y., Arima, K., Hirano, K., and Sugimura, Y. (2009). Evidence that androgen-independent stromal growth factor signals promote androgen-insensitive prostate cancer cell growth in vivo. Endocr. Relat. Cancer 16, 415–428.
Evidence that androgen-independent stromal growth factor signals promote androgen-insensitive prostate cancer cell growth in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlOht7k%3D&md5=430015883623a47470c711c06ba093f3CAS | 19293288PubMed |

Itoh, N. (2007). The FGF families in humans, mice and zebra fish: their evolutional processes and roles in development, metabolism and disease. Biol. Pharm. Bull. 30, 1819–1825.
The FGF families in humans, mice and zebra fish: their evolutional processes and roles in development, metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2jtLnJ&md5=65923a06240b6be044d2ac3b7d589071CAS | 17917244PubMed |

Itoh, N. (2010). Hormone-like (endocrine) FGFs: their evolutionary history and roles in development, metabolism and disease. Cell Tissue Res. 342, 1–11.
Hormone-like (endocrine) FGFs: their evolutionary history and roles in development, metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1elsLfE&md5=8fda6ed58d4e50c4ecb722585898231bCAS | 20730630PubMed |

Itoh, N., and Ornitz, D. M. (2004). Evolution of the FGF and FGFR gene families. Trends Genet. 20, 563–569.
Evolution of the FGF and FGFR gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlajsLo%3D&md5=79c3fff1175e15ea97b197499c57793cCAS | 15475116PubMed |

Itoh, N., and Ornitz, D. M. (2008). Functional evolutionary history of the mouse FGF gene family. Dev. Dyn. 237, 18–27.
Functional evolutionary history of the mouse FGF gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFGlu78%3D&md5=111bc9228e5288a3243a7c9b20ea048aCAS | 18058912PubMed |

Itoh, N., and Ornitz, D. M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130.
Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVemtro%3D&md5=01c1d10044f5f43ae7e919e8fe0bb315CAS | 20940169PubMed |

Iwamoto, M., Golden, E. B. G., Adams, S. L., Noji, S., and Pacifici, M. (1993). Responsiveness to retinoic acid changes during chondrocyte maturation. Exp. Cell Res. 205, 213–224.
Responsiveness to retinoic acid changes during chondrocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGhtbs%3D&md5=e20f2f5514fd7cf6fb7cd1f1acae361dCAS | 8387013PubMed |

Izumi, S., Slayden, O. D., Rubin, J. S., and Brenner, R. M. (1996). Keratinocyte growth factor and its receptor in the rhesus macaque placenta during the course of gestation. Placenta 17, 123–135.
Keratinocyte growth factor and its receptor in the rhesus macaque placenta during the course of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFWmsbk%3D&md5=85b212f122bdb3824e37688675a244fbCAS | 8730882PubMed |

Kezele, P., Nilsson, E. E., and Skinner, M. K. (2005). Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol. Reprod. 73, 967–973.
Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGktb%2FP&md5=ec2e7e0f5ddff72983ca2ed39a899a70CAS | 16000551PubMed |

Knight, P. G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-beta superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=87fe75604ddcd0282ab8e3cc89f13facCAS | 16885529PubMed |

Kobayashi, S., Berisha, B., Amselgruber, W. M., Schams, D., and Miyamoto, A. (2001). Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha. J. Endocrinol. 170, 369–380.
Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Skt74%3D&md5=1e143fb46b6a549a1049a9a026727b15CAS | 11479133PubMed |

Koji, T., Chedid, M., Rubin, J. S., Slayden, O. D., Csaky, K. G., Aaronson, S. A., and Brenner, R. M. (1994). Progesterone-dependent expression of keratinocyte growth factor mRNA in stromal cells of the primate endometrium: keratinocyte growth factor as a progestomedin. J. Cell Biol. 125, 393–401.
Progesterone-dependent expression of keratinocyte growth factor mRNA in stromal cells of the primate endometrium: keratinocyte growth factor as a progestomedin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlKms78%3D&md5=3933b02a84d2b46243d57905e6c1ff80CAS | 8163555PubMed |

Laezza, F., Lampert, A., Kozel, M. A., Gerber, B. R., Rush, A. M., Nerbonne, J. M., Waxman, S. G., Dib-Hajj, S. D., and Ornitz, D. M. (2009). FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol. Cell. Neurosci. 42, 90–101.
FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgu7%2FF&md5=84fd5ed02b194c20dc09d9cd051b3349CAS | 19465131PubMed |

LaPolt, P. S., Day, J. R., and Lu, J. K. (1990). Effects of oestradiol and progesterone on early embryonic development in aging rats. Biol. Reprod. 43, 843–850.
Effects of oestradiol and progesterone on early embryonic development in aging rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Clt78%3D&md5=c91804182c8570bcc945bdb0ed563251CAS | 2291918PubMed |

Lavranos, T. C., Rodgers, H. F., Bertoncello, I., and Rodgers, R. J. (1994). Anchorage-independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp. Cell Res. 211, 245–251.
Anchorage-independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlKlsLc%3D&md5=5fae7a1b5d3d4a682b7addc5166ff4deCAS | 8143770PubMed |

Lee, J., Choo, J., Choi, Y., Lee, K., Min, D., Pi, S., Seol, Y., Lee, S., Jo, I., Chung, C., and Park, Y. (2008). Characterisation of the surface-immobilised synthetic heparin-binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. J. Biomed. Mater. Res. 83, 970–979.

Li, Z., and Johnson, A. L. (1993). Expression and regulation of cytochrome P450 17 alpha-hydroxylase messenger ribonucleic acid levels and androstenedione production in hen granulosa cells. Biol. Reprod. 49, 1293–1302.
Expression and regulation of cytochrome P450 17 alpha-hydroxylase messenger ribonucleic acid levels and androstenedione production in hen granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislOqsg%3D%3D&md5=29e7d9415507005663472db3a6ec7b33CAS | 8286611PubMed |

Lu, W., Luo, Y., Kan, M., and McKeehan, W. L. (1999). Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate. J. Biol. Chem. 274, 12 827–12 834.
Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFGnsLY%3D&md5=0df6d58006a05e406b3fec90c59d4ba5CAS |

Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVGjtbs%3D&md5=6d5d1589418806ff5df5f3ddad0b1af9CAS | 11326082PubMed |

Masuda, H., Otsuka, F., Matsumoto, Y., Takano, M., Miyoshi, T., Inagaki, K., Shien, T., Taira, N., Makino, H., and Doihara, H. (2011). Functional interaction of fibroblast growth factor-8, bone morphogenetic protein and oestrogen receptor in breast cancer cell proliferation. Mol. Cell. Endocrinol. 343, 7–17.
Functional interaction of fibroblast growth factor-8, bone morphogenetic protein and oestrogen receptor in breast cancer cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaju7jJ&md5=60499d624bcc302c9a0a52437fb835baCAS | 21664418PubMed |

Matos, M. H. T., Lima-Verde, I. B., Luque, M. C. A., Maia, J. E., Silva, J. R. V., Celestino, J. J. H., Martins, F. S., Báo, S. N., Lucci, C. M., and Figueiredo, J. R. (2007a). Essential role of follicle-stimulating hormone in the maintenance of caprine preantral follicle viability in vitro. Zygote 15, 173–182.
Essential role of follicle-stimulating hormone in the maintenance of caprine preantral follicle viability in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWqtb0%3D&md5=5a912f30f7b021cf5581064b6a1d6bb9CAS |

Matos, M. H. T., Lima-Verde, I. B., Bruno, J. B., Lopes, C. A. P., Martins, F. S., Santos, K. D. B., Rocha, R. M. P., Silva, J. R. V., Báo, S. N., and Figueiredo, J. R. (2007b). Follicle-stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro. Reprod. Fertil. Dev. 19, 677–684.
Follicle-stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Kgt7o%3D&md5=9079e80f60be9124119b6ecad1a72933CAS |

Matos, M. H. T., Bruno, J. B., Rocha, R. M., Lima-Verde, I. B., Santos, K. D., Saraiva, M. V., Silva, J. R. V., Martins, F. S., Chaves, R. N., Báo, S. N., and Figueiredo, J. R. (2011). In vitro development of primordial follicles after long-term culture of goat ovarian tissue. Res. Vet. Sci. 90, 404–411.
In vitro development of primordial follicles after long-term culture of goat ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCiur8%3D&md5=48387bfd72464cc42f8093c7a0df7c13CAS |

Millier, S. G., Whitelaw, P. F., and Smyth, C. D. (1994). Follicular oestrogen synthesis: the ‘two-cell, two-gonadotrophin’ model revisited. Mol. Cell. Endocrinol. 100, 51–54.
Follicular oestrogen synthesis: the ‘two-cell, two-gonadotrophin’ model revisited.Crossref | GoogleScholarGoogle Scholar |

Miyake, A., Konishi, M., Martin, F. H., Hernday, N. A., Ozaki, K., Yamamoto, S., and Mikami, T. (1998). Structure and expression of a novel member, FGF-16, of the fibroblast growth factor family. Biochem. Biophys. Res. Commun. 243, 148–152.
Structure and expression of a novel member, FGF-16, of the fibroblast growth factor family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpsVWqtg%3D%3D&md5=56eb37df9b12ab35096122224ba56127CAS | 9473496PubMed |

Miyoshi, T., Otsuka, F., Yamashita, M., Inagaki, K., Nakamura, E., Tsukamoto, N., Takeda, M., Suzuki, J., and Makino, H. (2010). Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells. Mol. Cell. Endocrinol. 325, 84–92.
Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yku7s%3D&md5=8d7dffb32b4ed79cd8d70e3937867e5aCAS | 20434519PubMed |

Neuvians, T. P., Berisha, B., and Schams, D. (2004). Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) expression during induced luteolysis in the bovine corpus luteum. Mol. Reprod. Dev. 67, 389–395.
Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) expression during induced luteolysis in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWntbs%3D&md5=24c48091527dda0f643c70d459666c5fCAS | 14991729PubMed |

Nilsson, E., and Skinner, M. K. (2001). Cellular interactions that control primordial follicle development and folliculogenesis. J. Soc. Gynecol. Investig. 8, S17–S20.
Cellular interactions that control primordial follicle development and folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Oqsb8%3D&md5=7d5f267a5667c556d130cb70249da174CAS | 11223364PubMed |

Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G., and Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15 292–15 297.
Receptor specificity of the fibroblast growth factor family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVWlsrY%3D&md5=67efccfe5e3398229da9bdfa957c5dd5CAS |

Parrott, J. A., and Skinner, M. K. (1998). Developmental and hormonal regulation of keratinocyte growth factor expression and action in the ovarian follicle. Endocrinology 139, 228–235.
Developmental and hormonal regulation of keratinocyte growth factor expression and action in the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFKntA%3D%3D&md5=29c915476bfa6789cae4117f17d8f446CAS | 9421419PubMed |

Parrott, J. A., Kim, G., Mosher, R., and Skinner, M. K. (2000). Expression and action of keratinocyte growth factor (KGF) in normal ovarian surface epithelium and ovarian cancer. Mol. Cell. Endocrinol. 167, 77–87.
Expression and action of keratinocyte growth factor (KGF) in normal ovarian surface epithelium and ovarian cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Srurw%3D&md5=c32c3352a0fa88c3429df1f15d07bdedCAS | 11000522PubMed |

Pedchenko, V. K., and Imagawa, W. (2000). Oestrogen treatment in vivo increases keratinocyte growth factor expression in the mammary gland. J. Endocrinol. 165, 39–49.
Oestrogen treatment in vivo increases keratinocyte growth factor expression in the mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislSjsLo%3D&md5=11d980d5f19e905791d38caadc60604eCAS | 10750034PubMed |

Peluso, J. (2003). Basic fibroblast growth factor (bFGF) regulation of the plasma membrane calcium ATPase (PMCA) as part of an anti-apoptotic mechanism of action. Biochem. Pharmacol. 66, 1363–1369.
Basic fibroblast growth factor (bFGF) regulation of the plasma membrane calcium ATPase (PMCA) as part of an anti-apoptotic mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVeru70%3D&md5=8e7b45253fec0e0db9e3725b63d76263CAS | 14555210PubMed |

Peluso, J. J., and Pappalardo, A. (1999). Progesterone maintains large rat granulosa cell viability indirectly by stimulating small granulosa cells to synthesise basic fibroblast growth factor. Biol. Reprod. 60, 290–296.
Progesterone maintains large rat granulosa cell viability indirectly by stimulating small granulosa cells to synthesise basic fibroblast growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlyhsg%3D%3D&md5=a30a6349e6ef02189005b24d60235b34CAS | 9915993PubMed |

Peluso, J. J., Pappalardo, A., and Fernandez, G. (2001). Basic fibroblast growth factor maintains calcium homeostasis and granulosa cell viability by stimulating calcium efflux via a PKC delta-dependent pathway. Endocrinology 142, 4203–4211.
Basic fibroblast growth factor maintains calcium homeostasis and granulosa cell viability by stimulating calcium efflux via a PKC delta-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1ertrw%3D&md5=0f942703920a039ebab0ce2fee5dc3eeCAS | 11564676PubMed |

Portela, V. M., Machado, M., Buratini, J., Zamberlam, G., Amorim, R. L., Goncalves, P., and Price, C. A. (2010). Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol. Reprod. 83, 339–346.
Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrI&md5=337f530598d449525b7aca7f52a6c9d5CAS | 20484739PubMed |

Price, W. A. (2004). Regulation of insulin-like growth factor (IGF)-binding protein expression by growth factors and cytokines alters IGF-mediated proliferation of postnatal lung fibroblasts. Exp. Lung Res. 30, 261–283.
Regulation of insulin-like growth factor (IGF)-binding protein expression by growth factors and cytokines alters IGF-mediated proliferation of postnatal lung fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cju70%3D&md5=294c443bf39b2a76e5087470a16ed4f2CAS | 15204833PubMed |

Ribatti, D., Conconi, M. T., and Nussdorfer, G. G. (2007). Nonclassic endogenous novel (corrected) regulators of angiogenesis. Pharmacol. Rev. 59, 185–205.
Nonclassic endogenous novel (corrected) regulators of angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOhs7c%3D&md5=30b81079f417c6cf22289ef08291a016CAS | 17540906PubMed |

Riedel, F., Götte, K., Bergler, W., Rojas, W., and Hörmann, K. (2000). Expression of basic fibroblast growth factor protein and its down-regulation by interferons in head and neck cancer. Head Neck 22, 183–189.
Expression of basic fibroblast growth factor protein and its down-regulation by interferons in head and neck cancer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ksFynsQ%3D%3D&md5=cebd1497251b54714c6c75019545d95bCAS | 10679908PubMed |

Roy, S. K., and Greenwald, G. S. (1991). In vitro effects of epidermal growth factor, insulin-like growth factor-I, fibroblast growth factor and follicle-stimulating hormone on hamster follicular deoxyribonucleic acid synthesis and steroidogenesis. Biol. Reprod. 44, 889–896.
In vitro effects of epidermal growth factor, insulin-like growth factor-I, fibroblast growth factor and follicle-stimulating hormone on hamster follicular deoxyribonucleic acid synthesis and steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Gntro%3D&md5=95c0b76841787e7a01be6d463b1161d1CAS | 1907863PubMed |

Salli, U., Bartol, F. F., Wiley, A. A., Tarleton, B. J., and Braden, T. D. (1998). Keratinocyte growth factor expression by the bovine corpus luteum. Biol. Reprod. 59, 77–83.
Keratinocyte growth factor expression by the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaksb0%3D&md5=900befe9863b051b18c0cec68b874d09CAS | 9674996PubMed |

Samathanam, C. A., Adesanya, O. O., Zhou, J., Wang, J., and Bondy, C. A. (1998). Fibroblast growth factors 1 and 2 in the primate uterus. Biol. Reprod. 59, 491–496.
Fibroblast growth factors 1 and 2 in the primate uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVSltrs%3D&md5=5ffb549e720f8be328bb7d99d2dbd479CAS | 9716545PubMed |

Sánchez, F., Adriaenssens, T., Romero, S., and Smitz, J. (2009). Quantification of oocyte-specific transcripts in follicle-enclosed oocytes during antral development and maturation in vitro. Mol. Hum. Reprod. 15, 539–550.
Quantification of oocyte-specific transcripts in follicle-enclosed oocytes during antral development and maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 19553355PubMed |

Schteingart, H. F., Meroni, S. B., Cánepa, D. F., Pellizzari, E. H., and Cigorraga, S. B. (1999). Effects of basic fibroblast growth factor and nerve growth factor on lactate production, gamma-glutamyl transpeptidase and aromatase activities in cultured Sertoli cells. Eur. J. Endocrinol. 141, 539–545.
Effects of basic fibroblast growth factor and nerve growth factor on lactate production, gamma-glutamyl transpeptidase and aromatase activities in cultured Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Ont7g%3D&md5=f19d33c49eff04fb39b910838f5d3e24CAS | 10576773PubMed |

Shikone, T., Yamoto, M., and Nakano, R. (1992). Follicle-stimulating hormone induces functional receptors for basic fibroblast growth factor in rat granulosa cells. Endocrinology 131, 1063–1068.
Follicle-stimulating hormone induces functional receptors for basic fibroblast growth factor in rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGitbg%3D&md5=1542e12297ca760d18f6820c6c27e8c9CAS | 1324147PubMed |

Shimizu, T., Jiang, J. Y., Sasada, H., and Sato, E. (2002). Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts. Biol. Reprod. 67, 1846–1852.
Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVelsb0%3D&md5=2babf9f94691cfc9b18b56fcda1cb497CAS | 12444062PubMed |

Song, J., and Slack, J. M. (1996). XFGF-9: a new fibroblast growth factor from Xenopus embryos. Dev. Dyn. 206, 427–436.
XFGF-9: a new fibroblast growth factor from Xenopus embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFOjtrc%3D&md5=fdb82dfd7c7ff7c8bc25ede423d770ccCAS | 8853991PubMed |

Song, Y., McFarland, D. C., and Velleman, S. G. (2012). Fibroblast growth factor 2 and protein kinase C alpha are involved in syndecan-4 cytoplasmic domain modulation of turkey myogenic satellite cell proliferation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 161, 44–52.
| 1:CAS:528:DC%2BC3MXhsV2kurbL&md5=808938d4c07e046be0044544977171b8CAS | 21939780PubMed |

Speirs, V., Jenkins, S., and White, M. C. (1993). Growth factor regulation of 17 beta-hydroxysteroid dehydrogenase activity in a human ovarian cell line: modulation by 17 beta-oestradiol. Anticancer Res. 13, 1399–1403.
| 1:CAS:528:DyaK2cXis1WmtLk%3D&md5=7776bd4e5888ef3c39b5aa6f9fec50afCAS | 8239511PubMed |

Spicer, L. J., and Stewart, R. E. (1996). Interactions among basic fibroblast growth factor, epidermal growth factor, insulin and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors. Biol. Reprod. 54, 255–263.
Interactions among basic fibroblast growth factor, epidermal growth factor, insulin and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLjF&md5=12a3fa5719780578cdbc2ac98398afb5CAS | 8838024PubMed |

Stevenson, K. R., and Wathes, D. C. (1996). Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle. J. Reprod. Fertil. 108, 31–40.
Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFOlu7o%3D&md5=3eafd44710b722be05e876023b569550CAS | 8958825PubMed |

Stirling, D., Waterman, M. R., and Simpson, E. R. (1991). Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured luteal cells. J. Reprod. Fertil. 91, 1–8.
Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksValt7k%3D&md5=b1f8dec5ea015b51474694133552cf57CAS | 1847419PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=24f7116ae5af6058d9b0e2c62c72fe7dCAS | 17553902PubMed |

Taylor, M. J., and Clark, C. L. (1992). Basic fibroblast growth factor inhibits basal and stimulated relaxin secretion by cultured porcine luteal cells: analysis by reverse haemolytic plaque assay. Endocrinology 130, 1951–1956.
Basic fibroblast growth factor inhibits basal and stimulated relaxin secretion by cultured porcine luteal cells: analysis by reverse haemolytic plaque assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVymtbc%3D&md5=ec8a78259dca5385a78c7ebc9a6d49a5CAS | 1547722PubMed |

Tilly, J. L., Billig, H., Kowalski, K. I., and Hsueh, A. J. (1992). Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol. Endocrinol. 6, 1942–1950.
Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjtlGmtQ%3D%3D&md5=8fad3ed80fb523501a335bc0d90ebd86CAS | 1480180PubMed |

Tsafriri, A., and Adashi, E. Y. (1994). ‘Local Nonsteroidal Regulators of Ovarian Function’. (Eds E. Knobil and J. Neill) pp. 817–860. (Raven Press, Ltd.: New York.)

Tsai, S. J., Wu, M. H., Chen, H. M., Chuang, P. C., and Wing, L. Y. (2002). Fibroblast growth factor-9 is an endometrial stromal growth factor. Endocrinology 143, 2715–2721.
Fibroblast growth factor-9 is an endometrial stromal growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVymtrc%3D&md5=07d483e53a9ae7ce2de6bfc082e7732dCAS | 12072406PubMed |

Turner, N., and Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129.
Fibroblast growth factor signalling: from development to cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Gktg%3D%3D&md5=02d56a14923e1c4b09e6547775f9807fCAS | 20094046PubMed |

Valve, E., Penttilä, T. L., Paranko, J., and Härkönen, P. (1997). FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem. Biophys. Res. Commun. 232, 173–177.
FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVyltLs%3D&md5=426ebb12cee966b8d2f9bb5f54b2ffa4CAS | 9125125PubMed |

Van den Hurk, R., and Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–1751.
Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2js70%3D&md5=a97e34d35b6a1c1c9671bba598cb1583CAS | 15763114PubMed |

van Wezel, I. L., Umapathysivam, K., Tilley, W. D., and Rodgers, R. J. (1995). Immunohistochemical localisation of basic fibroblast growth factor in bovine ovarian follicles. Mol. Cell. Endocrinol. 115, 133–140.
Immunohistochemical localisation of basic fibroblast growth factor in bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslKmsL4%3D&md5=5375dbc2ce335cb58f845adf5da337f5CAS | 8824888PubMed |

Vernon, R. K., and Spicer, L. J. (1994). Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells. J. Anim. Sci. 72, 2696–2702.
| 1:CAS:528:DyaK2cXmsVKksL4%3D&md5=c9eefe8b1cb310fed9b626af908599d0CAS | 7883629PubMed |

Vesterlund, L., Töhönen, V., Hovatta, O., and Kere, J. (2011). Co-localisation of neural cell adhesion molecule and fibroblast growth factor receptor 2 in early embryo development. Int. J. Dev. Biol. 55, 313–319.
Co-localisation of neural cell adhesion molecule and fibroblast growth factor receptor 2 in early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ktbfI&md5=d6d8c13f09ff4a5d83b023bd9b995488CAS | 21710437PubMed |

Wandji, S. A., Eppig, J. J., and Fortune, J. E. (1996). FSH and growth factors affect the growth and endocrine function in vitro of granulosa cells of bovine preantral follicles. Theriogenology 45, 817–832.
FSH and growth factors affect the growth and endocrine function in vitro of granulosa cells of bovine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2qs7c%3D&md5=21de97f8d4c60118e8927bdeaef90a21CAS | 16727844PubMed |

Ware, L. B., and Matthay, M. A. (2002). Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation and repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, 924–940.

Watson, J. B., Getzler, S. B., and Mosher, D. F. (1994). Platelet factor-4 modulates the mitogenic activity of basic fibroblast growth factor. J. Clin. Invest. 94, 261–268.
Platelet factor-4 modulates the mitogenic activity of basic fibroblast growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1Kju7o%3D&md5=b83b4af3177396822eb515a944a7f06bCAS | 8040268PubMed |

Wing, L.-Y. C., Chuang, P.-C., Wu, M.-H., Chen, H.-M., and Tsai, S.-J. (2003). Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of oestrogen. J. Clin. Endocrinol. Metab. 88, 5547–5554.
Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of oestrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVyntLY%3D&md5=d2d01323b3985b2c2ea98f9eb3ce9b70CAS |

Woad, K. J., Hunter, M. G., Mann, G. E., Laird, M., Hammond, A. J., and Robinson, R. S. (2011). Fibroblast growth factor (FGF) 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction , .
| 21998077PubMed |

Wright, T. J., and Mansour, S. L. (2003). FGF-3 and FGF-10 are required for mouse otic placode induction. Development 130, 3379–3390.
FGF-3 and FGF-10 are required for mouse otic placode induction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1WhtLg%3D&md5=c121d6b4ab5898d897a7f629e9cb9775CAS | 12810586PubMed |

Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., and Thomson, J. A. (2005). Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGisrc%3D&md5=aa09e35a5be76eed7031da46b0ff989bCAS | 15782187PubMed |

Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., and Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15 694–15 700.
Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cktrc%3D&md5=490b667006140f3d66b65e190b96e54dCAS |

Zhou, H., and Zhang, Y. (2005). Regulation of in vitro growth of preantral follicles by growth factors in goats. Domest. Anim. Endocrinol. 28, 235–242.
Regulation of in vitro growth of preantral follicles by growth factors in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFeqtrk%3D&md5=78f57e81e8ec3318802a4b10fbb24155CAS | 15760665PubMed |