Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Caloric restriction, but not caloric loading, affects circulating fetal and maternal C-type natriuretic peptide concentrations in late ovine gestation

B. A. McNeill A C , G. K. Barrell A , M. J. Ridgway A , M. P. Wellby A , T. C. R. Prickett B and E. A. Espiner B
+ Author Affiliations
- Author Affiliations

A Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand.

B Department of Medicine, University of Otago, PO Box 4345, Christchurch 8140, New Zealand.

C Corresponding author. Email: bryonymcneill@gmail.com

Reproduction, Fertility and Development 24(8) 1063-1070 https://doi.org/10.1071/RD11312
Submitted: 15 December 2011  Accepted: 25 February 2012   Published: 10 April 2012

Abstract

The factors regulating the greatly elevated concentrations of maternal plasma C-type natriuretic peptide (CNP) forms in ruminant pregnancy are largely unknown, but nutrient status is likely to be important. Previous work has shown that increases in maternal plasma CNP, sourced from the placenta, occur in response to caloric restriction in late gestation. Whether oversupply of nutrients also regulates CNP secretion in pregnancy has not been studied. Hypothesising that CNP in fetal and maternal tissues will be responsive to both deficiency and excess, we studied changes in CNP and a cosecreted fragment, namely N-terminal pro-CNP (NTproCNP), during short-term periods of caloric restriction (CR) and loading (CL). Twin-bearing ewes received CR (fasted Days 121–124), CL (Days 110–124) or control maintenance diets. During CR, fetal plasma CNP forms, insulin-like growth factor (IGF)-1 and liveweight all fell, and maternal plasma NTproCNP increased. During CL, fetal IGF-1 increased, whereas CNP forms and liveweight were unchanged, as were maternal concentrations of CNP forms. The high abundance of CNP peptides in placental tissues was unaffected by these short-term changes in nutrient supply. We conclude that CNP in the fetal–maternal unit is acutely responsive to undernutrition, but is unaffected by oversupply in late gestation.

Additional keywords: insulin-like growth factor-1, N-terminal pro C-type natriuretic peptide, placenta, sheep.


References

Anderson, G. M., and Barrell, G. K. (1998). Effects of thyroidectomy and thyroxine replacement on seasonal reproduction in the red deer hind. J. Reprod. Fertil. 113, 239–250.
Effects of thyroidectomy and thyroxine replacement on seasonal reproduction in the red deer hind.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOnu7c%3D&md5=2c025cdf363a559d0146e27459bee540CAS | 9861164PubMed |

Broad, K. D., and Keverne, E. B. (2011). Placental protection of the fetal brain during short-term food deprivation. Proc. Natl Acad. Sci. USA 108, 15 237–15 241.
Placental protection of the fetal brain during short-term food deprivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gqt7%2FO&md5=02caa572e9006ffb682035bdfd4ae14cCAS |

Doi, K., Itoh, H., Nakagawa, O., Igaki, T., Yamashita, J., Chun, T., Inoue, M., Masatsugu, K., and Nakao, K. (1997). Expression of natriuretic peptide system during embryonic stem cell vasculogenesis. Heart Vessels 12, 18–22.
| 9476535PubMed |

Gluckman, P. D., and Pinal, C. S. (2003). Regulation of fetal growth by the somatotrophic axis. J. Nutr. 133, 1741S–1746S.
| 1:CAS:528:DC%2BD3sXjs1Oru78%3D&md5=12dfe98a642b8c69de6b524564bd5e48CAS | 12730493PubMed |

Itoh, H., Bird, I. M., Nakao, K., and Magness, R. R. (1998). Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries. Endocrinology 139, 3329–3341.
Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktV2hurs%3D&md5=5f2cdf5ff1006ea55da7cfbaf2c89b16CAS | 9645709PubMed |

Lea, R. G., Wooding, P., Stewart, I., Hannah, L. T., Morton, S., Wallace, K., Aitken, R. P., Milne, J. S., Regnault, T. R., Anthony, R. V., and Wallace, J. M. (2007). The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes. Reproduction 133, 785–796.
The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFersr4%3D&md5=ecf3c4f829a11a5138bef3dc59416252CAS | 17504922PubMed |

Ma, Y., Zhu, M. J., Zhang, L., Hein, S. M., Nathanielsz, P. W., and Ford, S. P. (2010). Maternal obesity and overnutrition alters fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R249–R258.
| 1:CAS:528:DC%2BC3cXpsVOrt7k%3D&md5=06d1c63f204eebc3f563223792d4c61fCAS | 20427725PubMed |

McNeill, B. A., Barrell, G. K., Wellby, M., Prickett, T. C. R., Yandle, T. G., and Espiner, E. A. (2009). C-Type natriuretic peptide (CNP) forms in pregnancy: maternal plasma profiles during ovine gestation correlate with placental and fetal maturation. Endocrinology 150, 4777–4783.
C-Type natriuretic peptide (CNP) forms in pregnancy: maternal plasma profiles during ovine gestation correlate with placental and fetal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktrvF&md5=3d214734977f991b4cd9a001c9f29717CAS | 19608649PubMed |

McNeill, B. A., Prickett, T. C. R., Wellby, M., Ridgway, M. J., Espiner, E. A., and Barrell, G. K. (2010). Circulating levels of C-type natriuretic peptide (CNP) are strongly linked to pregnancy but not to liveweight changes in ruminants. Proc. N. Z. Soc. Anim. Prod. 70, 13–18.

McNeill, B. A., Barrell, G. K., Wooding, F. B. P., Prickett, T. C. R., and Espiner, E. A. (2011). The trophoblast binucleate cell is the source of maternal circulating C-type natriuretic peptide during ovine pregnancy. Placenta 32, 645–650.
The trophoblast binucleate cell is the source of maternal circulating C-type natriuretic peptide during ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSru7vP&md5=ed987f95269634dd281a49c93e11b787CAS | 21705079PubMed |

Muhlhausler, B. S., Duffield, J. A., and McMillen, I. C. (2007). Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 148, 6157–6163.
Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVers7rF&md5=a3c40a53ab1df1339c19639e75188096CAS | 17884936PubMed |

Nicol, A. M., and Brookes, I. M. (2007). The metabolisable energy requirements of grazing livestock. In ‘Pasture and Supplements for Grazing Animals. Vol. 14.’ (Eds P. V. Rattray, I. M. Brookes and A. M. Nicol.) pp. 151–172. (New Zealand Society of Animal Production Occasional Publication: Hamilton.)

Owens, J. A. (1991). Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reprod. Fertil. Dev. 3, 501–517.
Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Clsrk%3D&md5=944e4351cc6743648fb57df3e77f46ffCAS | 1788391PubMed |

Philp, L. K., Muhlhausler, B. S., Janovska, A., Wittert, G. A., Duffield, J. A., and McMillen, I. C. (2008). Maternal overnutrition suppresses the phosphorylation of 5′-AMP-activated protein kinase in liver, but not skeletal muscle, in the fetal and neonatal sheep. Am. J. Physiol. Regul. Intergr. Comp. Physiol. 295, R1982–R1990.
| 1:CAS:528:DC%2BD1cXhsFSntbfF&md5=7014f09aa8dfc39bd7ef1fc44b88d978CAS |

Potter, L. R., Abbey-Hosch, S., and Dickey, D. M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophospahte-dependent signaling functions. Endocr. Rev. 27, 47–72.
Natriuretic peptides, their receptors, and cyclic guanosine monophospahte-dependent signaling functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSit7c%3D&md5=0274e420eb0d7e29088dd4ace5562029CAS | 16291870PubMed |

Prada, J. A., Ross, R., and Clark, K. E. (1992). Hypocalcemia and pregnancy-induced hypertension produced by maternal fasting. Hypertension 20, 620–626.
| 1:STN:280:DyaK3s%2Flt1OitA%3D%3D&md5=7f5ecd6bcb6f589c6a00ff849a6ccda4CAS | 1428113PubMed |

Prickett, T., Kaaja, R., Nicholls, M., Espiner, E., Richards, A., and Yandle, T. (2004). N-Terminal pro-C-type natriuretic peptide, but not C-type natriuretic peptide, is greatly elevated in the fetal circulation. Clin. Sci. 106, 535–540.
N-Terminal pro-C-type natriuretic peptide, but not C-type natriuretic peptide, is greatly elevated in the fetal circulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFSms7w%3D&md5=f56d63ade05d1422d61e7562d9705579CAS | 14717656PubMed |

Prickett, T. C. R., Rumball, C. W. H., Buckley, A. J., Bloomfield, F. H., Yandle, T. G., Harding, J. E., and Espiner, E. A. (2007). C-Type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition. Endocrinology 148, 4015–4022.
C-Type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Oitb0%3D&md5=06b59c7a1a1546b41b8c03aac95feb24CAS |

Prickett, T. C. R., Ryan, J. F., Wellby, M., Barrell, G. K., Yandle, T. G., Richards, A. M., and Espiner, E. A. (2010). Effect of nutrition on plasma C-type natriuretic peptide forms in adult sheep: evidence for enhanced C-type natriuretic peptide degradation during caloric restriction. Metabolism 59, 796–801.
Effect of nutrition on plasma C-type natriuretic peptide forms in adult sheep: evidence for enhanced C-type natriuretic peptide degradation during caloric restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVehsLo%3D&md5=3fd411f1a2055e4adac6208f2ab7f5acCAS |

Sanson, D. W., West, T. R., Tatman, W. R., Riley, M. L., Judkins, M. B., and Moss, G. E. (1993). Relationship of body composition of mature ewes with condition score and body weight. J. Anim. Sci. 71, 1112–1116.
| 1:STN:280:DyaK3s3otVShuw%3D%3D&md5=c6c23d3f1cc511c78d1956163ac2544bCAS | 8505241PubMed |

Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., and Nakao, K. (1993). Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells: evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 133, 3038–3041.
Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells: evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1KisQ%3D%3D&md5=0a2a890f2e755f479f69cf0b956d8b4eCAS | 8243333PubMed |

Vatnick, I., Schoknecht, P., Darrigrand, R., and Bell, A. (1991). Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J. Dev. Physiol. 15, 351–356.
| 1:STN:280:DyaK38%2FptFKqsw%3D%3D&md5=740c59c7fe933138940ef34f76b96791CAS | 1753075PubMed |

Vonnahme, K. A., Hess, B. W., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2006). Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions. J. Anim. Sci. 84, 3451–3459.
Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CnurfO&md5=97836c719519af5b665dd17b4427d787CAS | 17093240PubMed |

Wooding, F. B. P. (1982). The role of the binucleate cell in ruminant placental structure. J. Reprod. Fertil. 31, 31–39.
| 1:STN:280:DyaL3s7mtl2htg%3D%3D&md5=39320a6e8211c3e09d056595f2c23d4dCAS |

Wooding, F. B. P., Flint, A. P., Heap, R., Morgan, G., Buttle, H., and Young, I. R. (1986). Control of binucleate cell migration in the placenta of sheep and goats. J. Reprod. Fertil. 76, 499–512.
Control of binucleate cell migration in the placenta of sheep and goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287pvFyksw%3D%3D&md5=d504574459e29bfafa61180d0078708fCAS |

Wu, C., Wu, F., Pan, J., Morser, J., and Wu, Q. (2003). Furin-mediated processing of pro-C-type natriuretic pepide. J. Biol. Chem. 278, 25 847–25 852.
Furin-mediated processing of pro-C-type natriuretic pepide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1ClsL0%3D&md5=ebbcf508a0163738d066496bbcfac84aCAS |

Yamahara, K., Itoh, H., Chun, T. H., Ogawa, Y., Yamashita, J., Sawada, N., Fukunaga, Y., Sone, M., Yurugi-Kobayashi, T., Miyashita, K., Tsujimoto, H., Kook, H., Feil, R., Garbers, D. L., Hofmann, F., and Nakao, K. (2003). Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc. Natl Acad. Sci. USA 100, 3404–3409.
Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCnur4%3D&md5=e5d122b42051735930ae8e0157313926CAS | 12621153PubMed |

Zhu, M. J., Du, M., Nijland, M. J., Nathanielsz, P. W., Hess, B. W., Moss, G. E., and Ford, S. P. (2009). Down-regulation of growth signaling pathways linked to a reduced cotyledonary vascularity in placentomes of over-nourished, obese pregnant ewes. Placenta 30, 405–410.
Down-regulation of growth signaling pathways linked to a reduced cotyledonary vascularity in placentomes of over-nourished, obese pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFelsro%3D&md5=b4f63764c673fafa9377c44f76f91769CAS | 19268361PubMed |