Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells

Ruchi Sharma A , Aman George A , Nitin M. Kamble A , Manmohan S. Chauhan A , Suresh Singla A , Radhey S. Manik A and Prabhat Palta A B
+ Author Affiliations
- Author Affiliations

A Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, Haryana, India.

B Corresponding author. Email: prabhatpalta@yahoo.com

Reproduction, Fertility and Development 24(8) 1098-1104 https://doi.org/10.1071/RD11298
Submitted: 1 December 2011  Accepted: 23 March 2012   Published: 24 April 2012

Abstract

The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM + 1000 IU mL–1 leukemia inhibitory factor (LIF), SCM + 5 ng mL–1 FGF-2 or SCM + LIF + FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF + FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF + FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

Additional keywords: ACTIVIN-A, fetal fibroblast, mitomycin-C, pluripotency, TGF-β1.


References

Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., and Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.
Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVeks70%3D&md5=fa5ff0a8e5524a14eacd74beee1e8c16CAS | 11071754PubMed |

Anand, T., Kumar, D., Singh, M., Shah, R., Chauhan, M., Manik, R., Singla, S., and Palta, P. (2011). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 50–58.
Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlChuw%3D%3D&md5=50617dd324fee2be8b0c6b25114bd263CAS | 20042025PubMed |

Brandenberger, R., Wei, H., Zhang, S., Lei, S., Murage, J., Fisk, G. J., Li, Y., Xu, C., Fang, R., Guegler, K., Rao, M. S., Mandalam, R., Lebkowski, J., and Stanton, L. W. (2004). Transcriptome characterization elucidates signalling networks that control human ES cell growth and differentiation. Nat. Biotechnol. 22, 707–716.
Transcriptome characterization elucidates signalling networks that control human ES cell growth and differentiation.Crossref | GoogleScholarGoogle Scholar | 15146197PubMed |

Dahéron, L., Opitz, S. L., Zaehres, H., Lensch, W. M., Andrews, P. W., Itskovitz-Eldor, J., and Daley, G. Q. (2004). LIF/Stat3 signalling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778.
LIF/Stat3 signalling fails to maintain self-renewal of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 15342941PubMed |

Diecke, S., Quiroga-Negreira, A., Redmer, T., and Besser, D. (2008). FGF2 signalling in mouse embryonic fibroblasts is crucial for self-renewal of embryonic stem cells. Cells Tissues Organs 188, 52–61.
FGF2 signalling in mouse embryonic fibroblasts is crucial for self-renewal of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslCmsLs%3D&md5=84ea1f04f9f2cd2e2bd5db837e039b74CAS | 18334814PubMed |

Dvorak, P., Dvorakova, D., Koskova, S., Vodinska, M., Najvirtova, M., Krekac, D., and Hampl, A. (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23, 1200–1211.
Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCks7jF&md5=806bd2cd224c9e7eda08d23bfaddadd6CAS | 15955829PubMed |

Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A., and Dvorak, P. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52, 353–363.
Comparative study of mouse and human feeder cells for human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFKrtbw%3D&md5=d48cb7d10b38763b203c4ebaa7cda40eCAS | 18415935PubMed |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154–156.
Establishment in culture of pluripotent cells from mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3itV2qsg%3D%3D&md5=4d4a83e7939a99026c895878c049fe10CAS | 7242681PubMed |

Gong, G., Roach, M. L., Jiang, L., Yang, X., and Tian, X. C. (2010). Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram. 12, 151–160.
| 1:CAS:528:DC%2BC3cXlvVahtL4%3D&md5=2d305c585e863b64fcc54a18ab0afb0dCAS | 20677930PubMed |

Greber, B., Lehrach, H., and Adjaye, J. (2007). Fibroblast growth factor 2 modulates transforming growth factor β signalling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25, 455–464.
Fibroblast growth factor 2 modulates transforming growth factor β signalling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVOlt7g%3D&md5=7ad22595f733a918fb05e3f75d8095ccCAS | 17038665PubMed |

Kitiyanant, Y., Saikhun, J., Guochenga, J., and Pavasuthipaisita, K. (2000). Establishment and long-term maintenance of bovine embryonic stem cell lines using mouse and bovine mixed feeder cells and their survival after cryopreservation. Sci. Asia 26, 81–86.
Establishment and long-term maintenance of bovine embryonic stem cell lines using mouse and bovine mixed feeder cells and their survival after cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Kueh, J., Richards, M., Ng, S. W., Chan, W. K., and Bongso, A. (2006). The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression. Fertil. Steril. 85, 1843–1846.
The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWhtrY%3D&md5=722539617c8ee3f1d93ea495b6fcf5b3CAS | 16674954PubMed |

Kumar, D., Anand, T., Singh, K. P., Singh, M. K., Shah, R. A., Chauhan, M. S., Palta, P., Singla, S. K., and Manik, R. S. (2011). Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J. Assist. Reprod. Genet. , .
Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells.Crossref | GoogleScholarGoogle Scholar | 21573679PubMed |

Li, M., Ma, W., Hou, Y., Sun, X. F., Sun, Q. Y., and Wang, W. H. (2004). Improved isolation and culture of embryonic stem cells from Chinese miniature pig. J. Reprod. Dev. 50, 237–244.
Improved isolation and culture of embryonic stem cells from Chinese miniature pig.Crossref | GoogleScholarGoogle Scholar | 15118251PubMed |

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ltV2htg%3D%3D&md5=dc7b149563b3821169a9ae8d58ce1910CAS | 6950406PubMed |

Matsuda, T., Nakamura, T., Nakao, K., Arai, K., Katsuki, M., Heike, T., and Yokota, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269.
STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1GqsLg%3D&md5=c14d2d4f3d1825af6dc7a5da7bccb233CAS | 10428964PubMed |

Mitalipova, M., Beyhan, Z., and First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 59–67.
Pluripotency of bovine embryonic cell line derived from precompacting embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387mvFSltg%3D%3D&md5=b926ebadc5c0f4620c787248da49d97dCAS | 11900640PubMed |

Pera, M. F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., Stanley, E. G., Ward-van Oostwaard, D., and Mummery, C. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280.
Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVyqsLw%3D&md5=ce41350c5fdc3159087b67da8450d00dCAS | 14996946PubMed |

Richards, M., Fong, C. Y., Chan, W. K., Wong, P. C., and Bongso, A. (2002). Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.
Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1ahsL8%3D&md5=a366acb784259e50eae69c1f655c72f2CAS | 12161760PubMed |

Richards, M., Tan, S., Fong, C. Y., Biswas, A., Chan, W. K., and Bongso, A. (2003). Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546–556.
Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFeisrY%3D&md5=c8ce35db0f1cd400c1ac64552ffdb9c1CAS | 12968109PubMed |

Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Singla, S. K., Manik, R. S., and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell. Reprogram 13, 539–549.
| 1:CAS:528:DC%2BC3MXhs1yktL3K&md5=ec04dada2facc122df1d858998b8f774CAS | 22029416PubMed |

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntleisLg%3D&md5=c4f74f8b4ff01c79a121f0d51f6911ffCAS | 9804556PubMed |

Vallier, L., Morgan, A., and Pedersen, A. R. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509.
Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WnurrP&md5=0d3d6b32096a47bcb030632035bc5919CAS | 16179608PubMed |

Verma, V., Gautam, S. K., Singh, B., Manik, R. S., Palta, P., Singla, S. K., Goswami, S. L., and Chauhan, M. S. (2007). Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol. Reprod. Dev. 74, 520–529.
Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtbo%3D&md5=f4cac627f17e9cbb552f3c637d712bf6CAS | 17034054PubMed |

Wang, G., Zhang, H., Zhao, Y., Li, J., Cai, J., Wang, P., Meng, S., Feng, J., Miao, C., Ding, M., Li, D., and Deng, H. (2005). Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem. Biophys. Res. Commun. 330, 934–942.
Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2jurg%3D&md5=32012f7c382b278fd630b2f1bdc7768aCAS | 15809086PubMed |

Wei, H., Miura, T., Robson, P., Lim, S. K., Xu, X. Q., Lee, M. Y., Gupta, S., Stanton, L., Luo, Y., Schmitt, J., Thies, S., Wang, W., Khrebtukova, I., Zhou, D., Liu, E. T., Ruan, Y. J., Rao, M., and Lim, B. (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 23, 166–185.
Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Gktrw%3D&md5=fdb2c0c3aa626971f9191e17dba47358CAS |

Xiao, L., Yuan, X., and Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24, 1476–1486.
Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbbM&md5=edf5ec61e8f5490477a54259875e09f1CAS | 16456129PubMed |

Xie, C. Q., Lin, G., Luo, K. L., Luo, S. W., and Lu, G. X. (2004). Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive. Biochem. Biophys. Res. Commun. 315, 581–588.
Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yisbo%3D&md5=ad4ebc0d629790f57b486534604e7d73CAS | 14975740PubMed |

Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., and Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974.
Feeder-free growth of undifferentiated human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2msbY%3D&md5=0f42c9d2001dd45506b2269aa889eb35CAS | 11581665PubMed |

Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., and Thomson, J. A. (2005). Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGisrc%3D&md5=aa09e35a5be76eed7031da46b0ff989bCAS | 15782187PubMed |

Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.
BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFClu7c%3D&md5=38178f2e0b286f4dc159a5c2037658c4CAS | 14636556PubMed |