Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Evidence for cross-talk between the LH receptor and LH during implantation in mice

Virginie Gridelet A E , Marie Tsampalas A , Sarah Berndt B , Marie-Thérèse Hagelstein A , Chantal Charlet-Renard A , Valérie Conrath C , Fabien Ectors C , Fabian Hugé A , Carine Munaut B , Jean-Michel Foidart B D , Vincent Geenen A and Sophie Perrier d’Hauterive A D
+ Author Affiliations
- Author Affiliations

A University of Liege, Center of Immunology, Institute of Pathology, Centre Hospitalier Universitaire B-23, 4000 Liege–Sart Tilman, Belgium.

B University of Liege, Laboratory of Tumor and Development Biology, Institute of Pathology, Centre Hospitalier Universitaire B-23, 4000 Liege–Sart Tilman, Belgium.

C University of Liege, Transgenic Platform, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Centre Hospitalier Universitaire B34, 4000 Liege–Sart Tilman, Belgium.

D University of Liege, Centre for Assisted Medical Procreation, Centre Hospitalier Regional de la Citadelle, 4000 Liege, Belgium.

E Corresponding author. Email: virginie.gridelet@ulg.ac.be

Reproduction, Fertility and Development 25(3) 511-522 https://doi.org/10.1071/RD11241
Submitted: 21 September 2011  Accepted: 9 April 2012   Published: 29 May 2012

Abstract

The present study investigated the first interaction that occurs between the blastocyst and endometrium during implantation. Given the ethical objections to studying implantation in humans, a mouse model was used to study the dialogue between luteinising hormone (LH) and luteinising hormone receptor (LHCGR). Several studies performed on LHCGR-knockout mice have generated controversy regarding the importance of the dialogue between LH and LHCGR during implantation. There has been no demonstration of a bioactive LH-like signal produced by the murine blastocyst. The first aim of the present study was to examine and quantify, using radioimmunoassay, the generation of a bioactive LH signal by the murine blastocyst. We went on to examine and quantify endometrial Lhcgr expression to validate the mouse model. Expression of LHCGR in mouse uteri was demonstrated using immunohistochemistry and western blot analysis. To quantify the expression of Lh in the mouse blastocyst and Lhcgr in the endometrium, reverse transcription–polymerase chain reaction (RT-PCR) and real-time quantitative (q) RT-PCR were performed. The results demonstrate that Lhcgr expression in BALB/c mouse endometrial epithelium is increased at the time of implantation and indicate that LHCGR may contribute to the implantation process. In support of this hypothesis, we identified a bioactive LH signal at the time of murine blastocyst implantation.

Additional keywords: embryo signal, endometrium, LHCGR.


References

Afshar, Y., Stanculescu, A., Miele, L., and Fazleabas, A. T. (2007). The role of chorionic gonadotropin and Notch1 in implantation. J. Assist. Reprod. Genet. 24, 296–302.
The role of chorionic gonadotropin and Notch1 in implantation.Crossref | GoogleScholarGoogle Scholar | 17616802PubMed |

Allen, E. (1922). The oestrous cycle in the mouse. Am. J. Anat. 30, 297–371.
The oestrous cycle in the mouse.Crossref | GoogleScholarGoogle Scholar |

Aplin, J. D. (2000). The cell biological basis of human implantation. Best Pract. Res. Clin. Obstet. Gynaecol. 14, 757–764.
The cell biological basis of human implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlSjsA%3D%3D&md5=5cc0adab92926951a219fb3c008cc1caCAS |

Aplin, J. D., and Kimber, S. J. (2004). Trophoblast–uterine interactions at implantation. Reprod. Biol. Endocrinol. 2, 48.
Trophoblast–uterine interactions at implantation.Crossref | GoogleScholarGoogle Scholar | 15236654PubMed |

Bachelot, A., Beaufaron, J., Servel, N., Kedzia, C., Monget, P., Kelly, P. A., Gibori, G., and Binart, N. (2009). Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes. Am. J. Physiol. Endocrinol. Metab. 297, E676–E684.
Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ykurzK&md5=c796d38fb91a8a7efa830403dd00b424CAS | 19531635PubMed |

Berndt, S., Perrier d’Hauterive, S., Blacher, S., Pequeux, C., Lorquet, S., Munaut, C., Applanat, M., Herve, M. A., Lamande, N., Corvol, P., van den Brule, F., Frankenne, F., Poutanen, M., Huhtaniemi, I., Geenen, V., Noel, A., and Foidart, J. M. (2006). Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J. 20, 2630–2632.
Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtb%2FO&md5=4171b8043dfef9d132b3d31b283496caCAS | 17065221PubMed |

Bonnamy, P. J., Benhaim, A., and Leymarie, P. (1990). Estrous cycle-related changes of high affinity luteinizing hormone/human chorionic gonadotropin binding sites in the rat uterus. Endocrinology 126, 1264–1269.
Estrous cycle-related changes of high affinity luteinizing hormone/human chorionic gonadotropin binding sites in the rat uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtFans7c%3D&md5=dc4102aea46b1a9b9c54181877760fb2CAS | 2105203PubMed |

Buxton, L. E., and Murdoch, R. N. (1982). Metabolic properties of mouse uterine endometrial cells after isolated with collagenase. Aust. J. Biol. Sci. 35, 277–286.
| 1:CAS:528:DyaL38XkslSiu74%3D&md5=b906d28d7b43df36bd69690567c8203aCAS | 6293434PubMed |

Cameo, P., Srisuparp, S., Strakova, Z., and Fazleabas, A. T. (2004). Chorionic gonadotropin and uterine dialogue in the primate. Reprod. Biol. Endocrinol. 2, 50.
Chorionic gonadotropin and uterine dialogue in the primate.Crossref | GoogleScholarGoogle Scholar | 15236652PubMed |

Carson, D. D., Bagchi, I., Dey, S. K., Enders, A. C., Fazleabas, A. T., Lessey, B. A., and Yoshinaga, K. (2000). Embryo implantation. Dev. Biol. 223, 217–237.
Embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFeqs7o%3D&md5=5c70cfaa8a2d21640752248a2d66c4e5CAS | 10882512PubMed |

Champlin, A. K., Dorr, D. L., and Gates, A. H. (1973). Determining the stage of the estrous cycle in the mouse by the appearance of the vagina. Biol. Reprod. 8, 491–494.
| 1:STN:280:DyaE3s7psFCjsw%3D%3D&md5=5d7a5bd8fa6813915f1a4991196881f0CAS | 4736343PubMed |

Chudgar, D., Lei, Z., and Rao Ch, V. (2005). Orthotopic transplantation of LH receptor knockout and wild-type ovaries. Life Sci. 77, 2656–2662.
Orthotopic transplantation of LH receptor knockout and wild-type ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFersrg%3D&md5=45f3369a071721bfa8930f0028bc7781CAS | 15964032PubMed |

Ding, Y. Q., and Huhtaniemi, I. (1989). Human serum LH inhibitor(s): behaviour and contribution to in vitro bioassay of LH using dispersed mouse Leydig cells. Acta Endocrinol. 121, 46–54.
| 1:CAS:528:DyaL1MXkvFSmtLk%3D&md5=3fd6f3462edf70012fe15d0a0797800eCAS | 2545063PubMed |

Dufau, M. L., Mendelson, C. R., and Catt, K. J. (1974). A highly sensitive in vitro bioassay for luteinizing hormone and chorionic gonadotropin: testosterone production by dispersed Leydig cells. J. Clin. Endocrinol. Metab. 39, 610–613.
A highly sensitive in vitro bioassay for luteinizing hormone and chorionic gonadotropin: testosterone production by dispersed Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsVyjsbY%3D&md5=2f625d921dde96ee3b4e3bbb41888345CAS | 4369719PubMed |

Edwards, R. G. (2006). Human implantation: the last barrier in assisted reproduction technologies? Reprod. Biomed. Online 13, 887–904.
Human implantation: the last barrier in assisted reproduction technologies?Crossref | GoogleScholarGoogle Scholar | 17169215PubMed |

Fishel, S. B., Edwards, R. G., and Evans, C. J. (1984). Human chorionic gonadotropin secreted by preimplantation embryos cultured in vitro. Science 223, 816–818.
Human chorionic gonadotropin secreted by preimplantation embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtFGhs7g%3D&md5=152537d27e505113cbc58b653e9e9228CAS | 6546453PubMed |

Fluhr, H., Krenzer, S., Deperschmidt, M., Zwirner, M., Wallwiener, D., and Licht, P. (2006). Human chorionic gonadotropin inhibits insulin-like growth factor-binding protein-1 and prolactin in decidualized human endometrial stromal cells. Fertil. Steril. 86, 236–238.
Human chorionic gonadotropin inhibits insulin-like growth factor-binding protein-1 and prolactin in decidualized human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2jsbc%3D&md5=72919cea31ecc48ba195e54e7019d68aCAS | 16818038PubMed |

Ghosh, D., and Sengupta, J. (1998). Recent developments in endocrinology and paracrinology of blastocyst implantation in the primate. Hum. Reprod. Update 4, 153–168.
Recent developments in endocrinology and paracrinology of blastocyst implantation in the primate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czks12juw%3D%3D&md5=75dfe0b0b9ebc69de3b86dc65b7dc20bCAS | 9683352PubMed |

Gidley-Baird, A. A. (1977). Plasma progesterone, FSH and LH levels associated with implantation in the mouse. Aust. J. Biol. Sci. 30, 289–296.
| 1:CAS:528:DyaE2sXlvVWkt74%3D&md5=716c5127009c88140b0af802d40496d1CAS | 603458PubMed |

Han, S. W., Lei, Z. M., and Rao, C. V. (1996). Up-regulation of cyclooxygenase-2 gene expression by chorionic gonadotropin during the differentiation of human endometrial stromal cells into decidua. Endocrinology 137, 1791–1797.
Up-regulation of cyclooxygenase-2 gene expression by chorionic gonadotropin during the differentiation of human endometrial stromal cells into decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFCqsrw%3D&md5=e8433532dfe0f6a94ebeb6978d94c0d3CAS | 8612516PubMed |

Han, S. W., Lei, Z. M., and Rao, C. V. (1999). Treatment of human endometrial stromal cells with chorionic gonadotropin promotes their morphological and functional differentiation into decidua. Mol. Cell. Endocrinol. 147, 7–16.
Treatment of human endometrial stromal cells with chorionic gonadotropin promotes their morphological and functional differentiation into decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVGlsg%3D%3D&md5=a3c71a92f8314a890c2c5a1374763c4dCAS | 10195687PubMed |

Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280.
| 1:CAS:528:DyaK3MXlslKltLk%3D&md5=90ab6a11a44efdfd0a6795a81dc51e7cCAS | 1871133PubMed |

Huhtaniemi, I., Zhang, F. P., Kero, J., Hamalainen, T., and Poutanen, M. (2002). Transgenic and knockout mouse models for the study of luteinizing hormone and luteinizing hormone receptor function. Mol. Cell. Endocrinol. 187, 49–56.
Transgenic and knockout mouse models for the study of luteinizing hormone and luteinizing hormone receptor function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1SqsLc%3D&md5=7b8fe6e17495fc7fb4b0f6294c8da5f0CAS | 11988311PubMed |

Jensen, J. D., and Odell, W. D. (1988). Identification of LH/hCG receptors in rabbit uterus. Proc. Soc. Exp. Biol. Med. 189, 28–30.
| 1:CAS:528:DyaL1MXht1aq&md5=f6beb488e0de8919a24e0822e4edb34bCAS | 3141933PubMed |

Jurisicova, A., Antenos, M., Kapasi, K., Meriano, J., and Casper, R. F. (1999). Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst. Hum. Reprod. 14, 1852–1858.
Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzjtVKrtQ%3D%3D&md5=1a7de42e18fd23fd12e67e0a90d19235CAS | 10402404PubMed |

Kaasjager, W. A. (1969). Effect of progesterone and hypothalamic stimulation on LH release at different stages of the oestrous cycle in the rat. J. Endocrinol. 43, xix–xx.
| 1:STN:280:DyaF1M3hslKjtA%3D%3D&md5=56c9d7c2e2d0f8f1c1489fb00026963dCAS | 5815245PubMed |

Kayisli, U. A., Selam, B., Guzeloglu-Kayisli, O., Demir, R., and Arici, A. (2003). Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas–Fas ligand system. J. Immunol. 171, 2305–2313.
| 1:CAS:528:DC%2BD3sXmsVOrtrs%3D&md5=17c60684e5ed04c8b8455979db93fe11CAS | 12928375PubMed |

Khan, N. A., Khan, A., Savelkoul, H. F., and Benner, R. (2001). Inhibition of diabetes in NOD mice by human pregnancy factor. Hum. Immunol. 62, 1315–1323.
Inhibition of diabetes in NOD mice by human pregnancy factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvF2g&md5=58c1a268d0267d2383b47b8d479c95a0CAS | 11755999PubMed |

Khil, L. Y., Jun, H. S., Kwon, H., Yoo, J. K., Kim, S., Notkins, A. L., and Yoon, J. W. (2007). Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia 50, 2147–2155.
Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2lsL8%3D&md5=7a7d6fad9cdb82cd8d9ca9bcf9357cc1CAS | 17676307PubMed |

Lessey, B. A. (2000). Endometrial receptivity and the window of implantation. Best Pract. Res. Clin. Obstet. Gynaecol. 14, 775–788.
Endometrial receptivity and the window of implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlSjtg%3D%3D&md5=8d2198882a0cc7fea3563403c5db3cd0CAS |

Licht, P., Russu, V., Lehmeyer, S., and Wildt, L. (2001). Molecular aspects of direct LH/hCG effects on human endometrium: lessons from intrauterine microdialysis in the human female in vivo. Reprod. Biol. 1, 10–19.
| 1:STN:280:DC%2BD3srosFWksA%3D%3D&md5=b8fc76d95193353d045e967081f5c625CAS | 14666171PubMed |

Licht, P., Russu, V., Lehmeyer, S., Moll, J., Siebzehnrubl, E., and Wildt, L. (2002). Intrauterine microdialysis reveals cycle-dependent regulation of endometrial insulin-like growth factor binding protein-1 secretion by human chorionic gonadotropin. Fertil. Steril. 78, 252–258.
Intrauterine microdialysis reveals cycle-dependent regulation of endometrial insulin-like growth factor binding protein-1 secretion by human chorionic gonadotropin.Crossref | GoogleScholarGoogle Scholar | 12137859PubMed |

Licht, P., von Wolff, M., Berkholz, A., and Wildt, L. (2003). Evidence for cycle-dependent expression of full-length human chorionic gonadotropin/luteinizing hormone receptor mRNA in human endometrium and decidua. Fertil. Steril. 79, 718–723.
Evidence for cycle-dependent expression of full-length human chorionic gonadotropin/luteinizing hormone receptor mRNA in human endometrium and decidua.Crossref | GoogleScholarGoogle Scholar | 12620482PubMed |

Licht, P., Fluhr, H., Neuwinger, J., Wallwiener, D., and Wildt, L. (2007). Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol. Cell. Endocrinol. 269, 85–92.
Is human chorionic gonadotropin directly involved in the regulation of human implantation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslSqsbg%3D&md5=f6a2320f054a4f94922cd1dc4ed7b8a7CAS | 17367920PubMed |

Lin, D. X., Lei, Z. M., Li, X., and Rao Ch, V. (2005). Targeted disruption of LH receptor gene revealed the importance of uterine LH signaling. Mol. Cell. Endocrinol. 234, 105–116.
Targeted disruption of LH receptor gene revealed the importance of uterine LH signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Sqt7g%3D&md5=302c907a004e06777bdae5a125094882CAS | 15836959PubMed |

Mukherjee, D., Manna, P. R., and Bhattacharya, S. (1994). Functional relevance of luteinizing hormone receptor in mouse uterus. Eur. J. Endocrinol. 131, 103–108.
Functional relevance of luteinizing hormone receptor in mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslSrtb0%3D&md5=771ffb124d580011f2fa47eb18bd8144CAS | 8038901PubMed |

Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001). Implantation and the survival of early pregnancy. N. Engl. J. Med. 345, 1400–1408.
Implantation and the survival of early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1aqu74%3D&md5=c93f4c315d36247a97f8d99f6c31e15cCAS | 11794174PubMed |

Pakarainen, T., Zhang, F. P., Poutanen, M., and Huhtaniemi, I. (2005). Fertility in luteinizing hormone receptor-knockout mice after wild-type ovary transplantation demonstrates redundancy of extragonadal luteinizing hormone action. J. Clin. Invest. 115, 1862–1868.
Fertility in luteinizing hormone receptor-knockout mice after wild-type ovary transplantation demonstrates redundancy of extragonadal luteinizing hormone action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2qt7s%3D&md5=7cf3ad48467d0b4c89f07b6137984a4eCAS | 15951841PubMed |

Pan, H., Zhu, L., Deng, Y., and Pollard, J. W. (2006). Microarray analysis of uterine epithelial gene expression during the implantation window in the mouse. Endocrinology 147, 4904–4916.
Microarray analysis of uterine epithelial gene expression during the implantation window in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksbjJ&md5=0136f24b8b0695ef7b8712ce1b6d6771CAS | 16794013PubMed |

Paria, B. C., Reese, J., Das, S. K., and Dey, S. K. (2002). Deciphering the cross-talk of implantation: advances and challenges. Science 296, 2185–2188.
Deciphering the cross-talk of implantation: advances and challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsbs%3D&md5=5bf3db38e88081f130bdbe35bbe9c311CAS | 12077405PubMed |

Perrier d’Hauterive, S., Charlet-Renard, C., Berndt, S., Dubois, M., Munaut, C., Goffin, F., Hagelstein, M. T., Noel, A., Hazout, A., Foidart, J. M., and Geenen, V. (2004). Human chorionic gonadotropin and growth factors at the embryonic–endometrial interface control leukemia inhibitory factor (LIF) and interleukin 6 (IL-6) secretion by human endometrial epithelium. Hum. Reprod. 19, 2633–2643.
Human chorionic gonadotropin and growth factors at the embryonic–endometrial interface control leukemia inhibitory factor (LIF) and interleukin 6 (IL-6) secretion by human endometrial epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVOjtbo%3D&md5=133c5619a78807ef4e797ae690a3f169CAS | 15388676PubMed |

Perrier d’Hauterive, S., Charlet-Renard, C., Dubois, M., Berndt, S., Goffin, F., Foidart, J. M., and Geenen, V. (2005). Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta-related members. Neuroimmunomodulation 12, 157–163.
Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta-related members.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKkuro%3D&md5=0cd578994e3a6bd47b53ea237c54546fCAS | 15905624PubMed |

Psychoyos, A. (1986). Uterine receptivity for nidation. Ann. N. Y. Acad. Sci. 476, 36–42.
Uterine receptivity for nidation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FpvVeqtA%3D%3D&md5=fb4feab3bfbbf81221a4340c016f73f6CAS | 3541745PubMed |

Putti, R., and Varano, L. (1979). Histological and histochemical modifications of the uterine and vaginal mucosa of the mouse during the oestrus cycle. Basic Appl. Histochem. 23, 25–37.
| 1:STN:280:DyaL3c%2FmsVOitA%3D%3D&md5=bb7a35c2d6623c0174c778148b3fcfe5CAS | 574383PubMed |

Ramu, S., Acacio, B., Adamowicz, M., Parrett, S., and Jeyendran, R. S. (2011). Human chorionic gonadotropin from Day 2 spent embryo culture media and its relationship to embryo development. Fertil. Steril. 96, 615–617.
Human chorionic gonadotropin from Day 2 spent embryo culture media and its relationship to embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFarsrzM&md5=d3b04be2603274b014d305f9c40777fdCAS | 21742325PubMed |

Rao, C. V., and Lei, Z. M. (2007). The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine. Mol. Cell. Endocrinol. 269, 2–8.
The past, present and future of nongonadal LH/hCG actions in reproductive biology and medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslSqsLk%3D&md5=d4776659b68fde3ba162587ed5761393CAS | 17382462PubMed |

Roberts, R. M., Xie, S. C., and Mathialagan, N. (1996). Maternal recognition of pregnancy. Biol. Reprod. 54, 294–302.
Maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltF2qtg%3D%3D&md5=4a5406ef1c15603bd813205532f623ecCAS | 8788179PubMed |

Sherwin, J. R., Sharkey, A. M., Cameo, P., Mavrogianis, P. M., Catalano, R. D., Edassery, S., and Fazleabas, A. T. (2007). Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation. Endocrinology 148, 618–626.
Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOjt7w%3D&md5=106e25f3f1b4701b4c4694a5b37891fdCAS | 17110430PubMed |

Stewart, E. A., Sahakian, M., Rhoades, A., Van Voorhis, B. J., and Nowak, R. A. (1999). Messenger ribonucleic acid for the gonadal luteinizing hormone/human chorionic gonadotropin receptor is not present in human endometrium. Fertil. Steril. 71, 368–372.
Messenger ribonucleic acid for the gonadal luteinizing hormone/human chorionic gonadotropin receptor is not present in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7ktV2nsA%3D%3D&md5=59c034bd390c60dbe5de1cff143f8904CAS | 9988413PubMed |

Sunder, S., and Lenton, E. A. (2000). Endocrinology of the peri-implantation period. Best Pract. Res. Clin. Obstet. Gynaecol. 14, 789–800.
Endocrinology of the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtlSjtw%3D%3D&md5=8775337c14573e5b5460d90cbfde7385CAS |

Wide, L., and Wide, M. (1979). Chorionic gonadotrophin in the mouse from implantation to term. J. Reprod. Fertil. 57, 5–9.
Chorionic gonadotrophin in the mouse from implantation to term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFGgt78%3D&md5=b87f20f5623ccbb057f56395f2f55997CAS | 513006PubMed |

Zenclussen, A. C., Gerlof, K., Zenclussen, M. L., Ritschel, S., Zambon Bertoja, A., Fest, S., Hontsu, S., Ueha, S., Matsushima, K., Leber, J., and Volk, H. D. (2006). Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. Eur. J. Immunol. 36, 82–94.
Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVSgug%3D%3D&md5=ee4c94451580bdcfe1cbb9b68168d991CAS | 16358362PubMed |

Zhang, F. P., Poutanen, M., Wilbertz, J., and Huhtaniemi, I. (2001a). Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15, 172–183.
Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVKmuw%3D%3D&md5=b965ebd3832877a985cfe6a0d0990663CAS | 11145748PubMed |

Zhang, M., Shi, H., Segaloff, D. L., and Van Voorhis, B. J. (2001b). Expression and localization of luteinizing hormone receptor in the female mouse reproductive tract. Biol. Reprod. 64, 179–187.
| 1:STN:280:DC%2BD3M7gsl2rsw%3D%3D&md5=621487970a8f8f2b17d44e2dbbbeddf9CAS | 11133673PubMed |

Ziecik, A. J., Stanchev, P. D., and Tilton, J. E. (1986). Evidence for the presence of luteinizing hormone/human chorionic gonadotropin-binding sites in the porcine uterus. Endocrinology 119, 1159–1163.
Evidence for the presence of luteinizing hormone/human chorionic gonadotropin-binding sites in the porcine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVKmu78%3D&md5=441310b90a713559449c5f91e4313ca9CAS | 3015568PubMed |

Zygmunt, M., Herr, F., Keller-Schoenwetter, S., Kunzi-Rapp, K., Munstedt, K., Rao, C. V., Lang, U., and Preissner, K. T. (2002). Characterization of human chorionic gonadotropin as a novel angiogenic factor. J. Clin. Endocrinol. Metab. 87, 5290–5296.
Characterization of human chorionic gonadotropin as a novel angiogenic factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1yntbw%3D&md5=455b9e9877278b8be3fc810e2b7f995dCAS | 12414904PubMed |