Increasing expression of oxytocin and vasopressin receptors in the equine conceptus between Days 10 and 16 of pregnancy
Sven Budik A D , Franziska Palm B , Ingrid Walter C , Magdalena Helmreich C and Christine Aurich AA Centre for Artificial Insemination and Embryo Transfer, University of Veterinary Sciences, Vienna A-1210, Austria.
B Clinic for Obstetrics, Gynaecology and Andrology, University of Veterinary Sciences, Vienna A-1210, Austria.
C Institute of Anatomy, Histology and Embryology, University of Veterinary Sciences, Vienna A-1210, Austria.
D Corresponding author. Email: sven.budik@vetmeduni.ac.at
Reproduction, Fertility and Development 24(5) 641-648 https://doi.org/10.1071/RD11167
Submitted: 29 June 2011 Accepted: 27 September 2011 Published: 25 November 2011
Abstract
Oxytocin (OT) and arginine vasopressin (AVP) have been detected in the yolk sac of the pre-attachment equine conceptus. Therefore, we have assessed the presence of OT and AVP receptors in equine conceptuses between Days 10 and 16 of pregnancy by qualitative PCR, quantitative PCR and immunohistochemistry. Expression of OT receptor and of the AVP receptors V1aR and V2R could be verified after sequencing the RT-PCR products of the expected length. The size of conceptuses used for quantitative PCR significantly increased with day of pregnancy (P < 0.01) as did their quantitative expression of OTR (P < 0.01). Immunohistochemistry of OTR resulted in weak trophectodermal abundance on Day 10, increasing at Day 12. On Day 14, staining intensity increased in individual cells of the trophectoderm while it decreased in other cells; this trend became more apparent on Day 16. The endoderm of the trophoblast and surrounding subtrophoblastic compartments always showed moderate staining for OTR. On Day 10 immunoreactive V2R protein was localised in the trophectodermal apical membrane; on Day 12 it was also present in the basal membrane and weakly in the cytoplasm. On Day 14 only individual trophectodermal cells showed positive supranuclear cytoplasmic areas or V2R, whereas on Day 16 about one-third of the trophectodermal cells were stained entirely and intensely positive. These results suggest an involvement of OT and AVP action in the development and expansion of the early equine conceptus.
Additional keywords: aquaporin regulation, expansion, yolk sac.
References
Aurich, C., König, N., and Budik, S. (2011). Effects of repeated embryo collection on embryo recovery rate in fertile mares. Reprod. Domest. Anim. 46, 419–422.| Effects of repeated embryo collection on embryo recovery rate in fertile mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mvos1CnsA%3D%3D&md5=ad67bba12040cc65df6e950f4fd52334CAS | 20678088PubMed |
Behrendt-Adam, C. Y., Adams, M. H., Simpson, K. S., and McDowell, K. J. (1999). Oxytocin-neurophysin I mRNA abundance in equine uterine endometrium. Domest. Anim. Endocrinol. 16, 183–192.
| Oxytocin-neurophysin I mRNA abundance in equine uterine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslCls74%3D&md5=8b4409687f7e99afe3251d5e76730eddCAS | 10343920PubMed |
Beretsos, P., Loutradis, D., Koussoulakos, S., Margaritis, L. H., Kiapekou, E., Mastorakos, G., Papaspirou, I., Makris, N., Makrigiannakis, A., and Antsaklis, A. (2006). Oxytocin receptor is deferentially expressed in mouse endometrium and embryo during blastocyst implantation. Ann. N. Y. Acad. Sci. 1092, 466–479.
| Oxytocin receptor is deferentially expressed in mouse endometrium and embryo during blastocyst implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlajtL4%3D&md5=1995c94f3a353733455469bef111a1fdCAS | 17308174PubMed |
Budik, S., Walter, I., Tschulenk, W., Helmreich, M., Deichsel, K., Pittner, F., and Aurich, C. (2008). Significance of aquaporins and sodium–potassium ATPase subunits for expansion of the early equine conceptus. Reproduction 135, 497–508.
| Significance of aquaporins and sodium–potassium ATPase subunits for expansion of the early equine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOnu74%3D&md5=1fbc9d23c38ef00a726b2b4275cdfe55CAS | 18367510PubMed |
Cassoni, P., Sapino, A., Munaron, L., Deaglio, S., Chini, B., Graziani, A., Ahmed, A., and Bussolati, G. (2001). Activation of functional oxytocin receptors stimulates cell proliferation in human trophoblast and choriocarcinoma cell lines. Endocrinology 142, 1130–1136.
| Activation of functional oxytocin receptors stimulates cell proliferation in human trophoblast and choriocarcinoma cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFemt7w%3D&md5=0d2a5ddb669570a85b97758e4e797e18CAS | 11181528PubMed |
Cattaneo, G. M., Lucci, G., and Vicentini, L. M. (2009). Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism. Exp. Cell Res. 315, 3210–3219.
| Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism.Crossref | GoogleScholarGoogle Scholar |
Dibas, A. I., Mia, A. J., and Yorio, T. (1998). Aquaporins (water channels): role of vasopressin-activated water transport. Proc. Soc. Exp. Biol. Med. 219, 183–199.
| 1:CAS:528:DyaK1cXnslyqtLg%3D&md5=8a97785764a60c0fd3e562c05efec99fCAS | 9824541PubMed |
Enders, A. C., Schlafke, S., Lantz, K. C., and Liu, I. K. M. (1993). Endoderm cells of the equine yolk sac from Day 7 until formation of the definitive yolk-sac placenta. Equine Vet. J. Suppl. 15, 3–9.
Friedmann, A. S., Memoli, V. A., and North, W. G. (1991). Evidence for vasopressin production in the human gastrointestinal system. Peptides 12, 1051–1056.
| Evidence for vasopressin production in the human gastrointestinal system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XpsVM%3D&md5=1bfb100af2684b82c221cea5b3aaee61CAS | 1800947PubMed |
Fuchs, A. R., Helmer, H., Behrens, O., Liu, H.-C., Antonian, L., Chang, S. M., and Fields, M. J. (1992). Oxytocin and bovine parturition: a steep rise in endometrial oxytocin receptors precedes onset of labour. Biol. Reprod. 47, 937–944.
| Oxytocin and bovine parturition: a steep rise in endometrial oxytocin receptors precedes onset of labour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjtlahug%3D%3D&md5=7bb68e2a94cf44ab2555d2c31bc9bb28CAS | 1337277PubMed |
Fuchs, A. R., Behrens, O., Maschek, H., Kupsch, E., and Einspanier, A. (1998). Oxytocin and vasopressin receptors in human and uterine myomas during menstrual cycle and early pregnancy. Hum. Reprod. Update 4, 594–604.
| Oxytocin and vasopressin receptors in human and uterine myomas during menstrual cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVShsbY%3D&md5=af3ca3c7ae5f736af5198a63d85c7622CAS | 10027613PubMed |
Fushimi, K., Sasaki, S., and Marumo, F. (1997). Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14 800–14 804.
| Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslentbY%3D&md5=8e6b9072985b76a4212531146d213dcbCAS |
Gimpl, G., and Fahrenholz, F. (2001). The oxytocin receptor system: structure, function and regulation. Physiol. Rev. 81, 629–683.
| 1:CAS:528:DC%2BD3MXislCrsLk%3D&md5=25f9e55f174719228ff711e3635ae3fcCAS | 11274341PubMed |
Hupf, H., Grimm, D., Riegger, G. A., and Schunkert, H. (1999). Evidence for a vasopressin system in the rat heart. Circ. Res. 84, 365–370.
| 1:CAS:528:DyaK1MXhsVaru7g%3D&md5=d5cdb5d9c6a1c609232c8206e9d4fcedCAS | 10024312PubMed |
Joost, P., and Methner, A. (2002). Phylogenetic analysis of 277 human G protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol. 3, research0063 – research0063.16.
| Phylogenetic analysis of 277 human G protein-coupled receptors as a tool for the prediction of orphan receptor ligands.Crossref | GoogleScholarGoogle Scholar | 12429062PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS | 11846609PubMed |
Matsamura, Y., Uchida, S., Rai, T., Sasaki, S., and Marmo, F. (1997). Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J. Am. Soc. Nephrol. 8, 861–867.
Parkinson, T. J., Stewart, H. J., Hunter, M. G., Jones, D. S., Wathes, D. C., and Flint, A. P. (1991). Evidence against a role for blastocyst-secreted oxytocin in early pregnancy maintenance in sheep. J. Endocrinol. 130, 443–449.
| Evidence against a role for blastocyst-secreted oxytocin in early pregnancy maintenance in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFWisbY%3D&md5=f2cc777cb224c980ca60a5f8641a96a7CAS | 1940718PubMed |
Sharp, D. C., Thatcher, M. J., Salute, M. E., and Fuchs, A. R. (1997). Relationship between oxytocin receptors and oxytocin-induced prostaglandin F2α release during the oestrous cycle and early pregnancy in pony mares. J. Reprod. Fertil. 109, 137–144.
| Relationship between oxytocin receptors and oxytocin-induced prostaglandin F2α release during the oestrous cycle and early pregnancy in pony mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gmu7c%3D&md5=753f3cfb7997d7c19be1f2a5c955d1afCAS | 9068425PubMed |
Sidhaye, V., Hoffert, J. D., and King, L. S. (2005). cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J. Biol. Chem. 280, 3590–3596.
| cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVGgsA%3D%3D&md5=8a7abe2f5220bb8a5145469ca6622ee8CAS | 15536076PubMed |
Stock, S., and Osterlund, C. (1998). Expression of the oxytocin receptor and oxytocin gene in human oocytes and preimplantative embryos. Adv. Exp. Med. Biol. 449, 323–324.
| Expression of the oxytocin receptor and oxytocin gene in human oocytes and preimplantative embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7ltVyrsA%3D%3D&md5=f2838e21eff8c446ae61056a3590bbd9CAS | 10026820PubMed |
Stormshak, F. (2003). Biochemical and endocrine aspects of oxytocin production by the mammalian corpus luteum. Reprod. Biol. Endocrinol. 1, 92.
| Biochemical and endocrine aspects of oxytocin production by the mammalian corpus luteum.Crossref | GoogleScholarGoogle Scholar | 14613532PubMed |
Waelchli, R. O., Shand, N. A., Round, H. K., Alexander, S. L., and Betteridge, K. J. (2000). Oxytocin and arginine vasopressin accumulation in the equine conceptus during the second to fifth weeks of gestation. Theriogenology 53, 287..
Yang, F., Kawedia, J. D., and Menon, A. G. (2003). Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J. Biol. Chem. 278, 32 173–32 180.
| Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOmsLw%3D&md5=500794f1ad088a77f64c8ef8f9d2dbadCAS |
Zingg, H. H., Rozen, F., Chu, K., Lareher, A., Arslan, A., Richard, S., and Lefebvre, D. L. (1995). Oxytocin and oxytocin receptor gene expression in the uterus. Recent Prog. Horm. Res. 50, 255–273.
| 1:CAS:528:DyaK2MXmt1KjurY%3D&md5=c13d05aa14fe3e09d2d6b1a9b53ed801CAS | 7740160PubMed |