Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

High levels of mitochondrial heteroplasmy modify the development of ovine–bovine interspecies nuclear transferred embryos

Song Hua A B , Chenglong Lu A B , Yakun Song A , Ruizhe Li A , Xu Liu A , Fusheng Quan A , Yongsheng Wang A , Jun Liu A , Feng Su A and Yong Zhang A C
+ Author Affiliations
- Author Affiliations

A College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People’s Republic of China.

B These authors contributed equally to this paper.

C Corresponding author. Email: hs863@nwsuaf.edu.cn

Reproduction, Fertility and Development 24(3) 501-509 https://doi.org/10.1071/RD11091

Abstract

To investigate the effect of mitochondrial heteroplasmy on embryo development, cloned embryos produced using bovine oocytes as the recipient cytoplasm and ovine granulosa cells as the donor nuclei were complemented with 2 pL mitochondrial suspension isolated from ovine (BOOMT embryos) or bovine (BOBMT embryos) granulosa cells; cloned embryos without mitochondrial injection served as the control group (BO embryos). Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and sodium bisulfite genomic sequencing were used to analyse mRNA and methylation levels of pluripotency genes (OCT4, SOX2) and mitochondrial genes (TFAM, POLRMT) in the early developmental stages of cloned embryos. The number of mitochondrial DNA copies in 2 pL ovine-derived and bovine-derived mitochondrial suspensions was 960 ± 110 and 1000 ± 120, respectively. The blastocyst formation rates were similar in BOBMT and BO embryos (P > 0.05), but significantly higher than in BOOMT embryos (P < 0.01). Expression of OCT4 and SOX2, as detected by RT-qPCR, decreased significantly in BOOMT embryos (P < 0.05), whereas the expression of TFAM and POLRMT increased significantly, compared with expression in BOOMT and BO embryos (P < 0.05). In addition, methylation levels of OCT4 and SOX2 were significantly greater (P < 0.05), whereas those of TFAM and POLRMT were significantly lower (P < 0.01), in BOOMT embryos compared with BOBMT and BO embryos. Together, the results of the present study suggest that the degree of mitochondrial heteroplasmy may affect embryonic development.

Additional keywords: gene expression, methylation.


References

Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.
Multipotent cell lineages in early mouse development depend on SOX2 function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlKqtg%3D%3D&md5=56402ed20d763e38fbc8965c2169a593CAS | 12514105PubMed |

Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., and Jaenisch, R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013.
Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKgs77F&md5=697ba3719f8925d845018c0ba7c4ad59CAS | 16709876PubMed |

Bonk, A. J., Cheong, H. T., Li, R., Lai, L. X., Hao, Y. H., Liu, Z. H., Samue, M., Fergason, E. A., Whitworth, K. M., Murphy, C. N., Antoniou, E., and Prather, R. S. (2007). Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine. Epigenetics 2, 179–186.
Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine.Crossref | GoogleScholarGoogle Scholar | 17965590PubMed |

Burgstaller, J. P., Schinogl, P., Dinnyes, A., Muller, M., and Steinborn, R. (2007). Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 7, 141.
Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 18154666PubMed |

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.
Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur8%3D&md5=0f6449932ffded8b5930f809cef01482CAS | 12787505PubMed |

Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M., and Larsson, N. G. (2004). Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944.
Mitochondrial transcription factor A regulates mtDNA copy number in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyhur0%3D&md5=e30d47f899e1be561397ca78cc8b6ea9CAS | 15016765PubMed |

Facucho-Oliveira, J. M., and St. John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. Rep. 5, 140–158.
The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1agurzL&md5=7744560a48cceb7aed76b4c431c3e378CAS |

Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., and St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034.
Mitochondrial DNA replication during differentiation of murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOru73K&md5=d1c170f57985f24bb616fe503add3629CAS | 17971411PubMed |

Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N. G., and Gustafsson, C. M. (2002). Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31, 289–294.
Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGmtLo%3D&md5=9abde505811ed2105bc9fe9e843c0200CAS | 12068295PubMed |

Fusté, J. M., Wanrooij, S., Jemt, E., Granycome, C. E., Cluett, T. J., Shi, Y., Atanassova, N., Holt, I. J., Gustafsson, C. M., and Falkenberg, M. (2010). Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 37, 67–78.
Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication.Crossref | GoogleScholarGoogle Scholar | 20129056PubMed |

Gaspari, M., Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2004). The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 23, 4606–4614.
The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWisrrM&md5=7c572ae29731f441db668bd7b2a17f39CAS | 15526033PubMed |

Gomez, M. C., Pope, E. C., Giraldo, A., Lyons, L. A., Harris, R. F., King, A. L., Cole, A., Godke, R. A., and Dresser, B. A. (2004). Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6, 247–258.
Birth of African wildcat cloned kittens born from domestic cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFamtro%3D&md5=62dff151de84138d6702e0adae616b81CAS | 15671671PubMed |

Hiendleder, S., and Wolf, E. (2003). The mitochondrial genome in embryo technologies. Reprod. Dom. Anim. 38, 290–304.
| 1:CAS:528:DC%2BD3sXotF2kt70%3D&md5=d85c75a5509c1bfa0c29503265d4a445CAS |

Hua, S., Zhang, Y., Li, X. C., Ma, L. B., Cao, J. W., Dai, J. P., and Li, R. (2007). Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro. Cloning Stem Cells 9, 237–246.
Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wgtrc%3D&md5=7642148e9b761387ee9887210bbd07d3CAS | 17579556PubMed |

Hua, S., Zhang, Y., Song, K., Song, J., Zhang, Z., Zhang, L., Zhang, C., Cao, J., and Ma, L. B. (2008). Development of ovine–bovine interspecies cloned embryos and mitochondria segregation in blastomeres during preimplantation. Anim. Reprod. Sci. 105, 245–257.
Development of ovine–bovine interspecies cloned embryos and mitochondria segregation in blastomeres during preimplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVWiu70%3D&md5=1119729aa33d914725182df03fa4ccb3CAS | 17399920PubMed |

Ikumi, S., Asada, M., Sawai, K., and Fukui, Y. (2003). Effect of activation methods for bovine oocytes after intracytoplasmic injection. J. Reprod. Dev. 49, 37–43.
Effect of activation methods for bovine oocytes after intracytoplasmic injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlerurk%3D&md5=a7fd7c6cb60172c5460da6f002948259CAS | 14967947PubMed |

Kameyama, Y., Filion, F., Yoo, J. G., and Smith, L. C. (2007). Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro. Reproduction 133, 423–432.
Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOjt74%3D&md5=11b12b5eecc2bf6d8e225495c93ffe2dCAS | 17307910PubMed |

Lanza, R. P., Cibelli, J. B., Diaz, F., Moraes, C. T., Farin, P. W., Farin, C. E., Hammer, C. J., West, M. D., and Damiani, P. (2000). Cloning of endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90.
Cloning of endangered species (Bos gaurus) using interspecies nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFShu78%3D&md5=1a3875e108a49c9ea391b171e0df8bffCAS | 16218862PubMed |

Lloyd, R. E., Lee, J. H., Alberio, R., Bowles, E. J., Ramalho-Santos, J., Campbell, K. H. S., and St. John, J. C. (2006). Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172, 2515–2527.
Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFOgtL4%3D&md5=5e0c338ae5aec59c73f03e1a1acd02d9CAS | 16452133PubMed |

Loi, P., Ptak, G., Barbonl, B., Fulka, J., Cappai, P., and Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964.
Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2msL8%3D&md5=7c1325b31cf00bc9d5d6cb3d0a41ccecCAS | 11581663PubMed |

May-Panloup, P., Vignon, X., Chrétien, M. F., Heyman, Y., Tamassia, M., Malthièry, Y., and Reynier, P. (2005). Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod. Biol. Endocrinol. 65, 1–8.
Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors.Crossref | GoogleScholarGoogle Scholar |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=b5fdaf1cbfe07b79c6dc0c202c80be92CAS | 9814708PubMed |

Robertson, K. D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610.
DNA methylation and human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFeqtb8%3D&md5=cc918d768a8f93ba7f2ffbf1999f77d0CAS | 16136652PubMed |

Schatten, H., Prather, R. S., and Sun, Q. Y. (2005). The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 5, 303–321.
The significance of mitochondria for embryo development in cloned farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeiurrF&md5=1a987183c33ca3d96c284846f26664d1CAS | 16150655PubMed |

Smith, L. C., Thundathil, J., and Filion, F. (2005). Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies. Reprod. Fertil. Dev. 17, 15–22.
Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurnE&md5=a040ba002c1db2add5fc6197e1f4abe0CAS | 15745628PubMed |

Sparman, M., Dighe, V., Sritanaudomchai, H., Hong, M., Ramsey, C., Pedersen, D., Clepper, L., Nighot, P., Wolf, D., Hennebold, J., and Mitalipovacd, S. (2009). Epigenetic reprogramming by somatic cell nuclear transfer in primates. Stem Cells 27, 1255–1264.
Epigenetic reprogramming by somatic cell nuclear transfer in primates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFartbw%3D&md5=93d7f62e87a0464864628896b5d2d668CAS | 19489081PubMed |

St. John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 16, 488–509.
Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVektr7L&md5=789dcf073441b0b1d0cd93fe2720eeabCAS | 20231166PubMed |

Takeda, K., Tasai, M., Iwamoto, M., Onishi, A., Tagami, T., Nirasawa, K., Hanada, H., and Pinkert, C. A. (2005). Mircroinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes. Biol. Reprod. 72, 1397–1404.
Mircroinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFGqsb8%3D&md5=7ebd1ec2e46fa775454e2bf7ac1467bfCAS | 15716395PubMed |

Takeda, K., Tasai, M., Akagi, S., Matsukawa, K., Takahashi, S., Iwamoto, M., Srirattana, K., Onishi, A., Tagami, T., Nirasawa, K., Hanada, H., and Pinkert, C. A. (2010). Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion 10, 137–142.
Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlaqsb8%3D&md5=c63be78b37484afa829f4e3a4d6d9bd8CAS | 20005304PubMed |

Wade, P. A., and Fujita, N. (2004). Nuclear transfer: epigenetics pays a visit. Nature 6, 920–922.
Nuclear transfer: epigenetics pays a visit.Crossref | GoogleScholarGoogle Scholar |

Yan, Z. H., Zhou, Y. Y., Fu, J., Jiao, F., Zhao, L. W., Guan, P. F., Huang, S. Z., Zeng, Y. T., and Zeng, F. Y. (2010). Donor–host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 10, 31.
Donor–host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Sjsr8%3D&md5=57afcb1d8ad6f2e701fb8edd0fc68774CAS | 20302653PubMed |