Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Hormonal induction of spermatozoa from amphibians with Rana temporaria and Bufo bufo as anuran models

V. K. Uteshev A , N. V. Shishova A , S. A. Kaurova A , R. K. Browne A B C and E. N. Gakhova A
+ Author Affiliations
- Author Affiliations

A Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.

B Centre for Conservation and Research, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium.

C Corresponding author. Email: robert.browne@gmail.com

Reproduction, Fertility and Development 24(4) 599-607 https://doi.org/10.1071/RD10324
Submitted: 30 November 2010  Accepted: 4 August 2011   Published: 23 November 2011

Abstract

The use of hormonally induced spermatozoa expressed in urine (HISu) is a valuable component of reproduction technologies for amphibians. Five protocols for sampling HISu from the European common frog (Rana temporaria) were compared: (1) pituitary extracts, (2) 0.12 µg g–1 luteinising hormone-releasing hormone analogue (LHRHa), (3) 1.20 µg g–1 LHRHa, (4) 11.7 IU g–1 human chorionic gonadotrophin (hCG) and (5) 23.4 IU g–1 hCG (g–1 = per gram bodyweight). From 1 to 24 h after administration we assessed the number and concentration of spermatozoa in spermic urine and in holding water, and in urine the percentage of motile spermatozoa and their progressive motility. The protocol using 1.20 µg g–1 LHRHa gave the highest total sperm numbers (650 × 106) and the highest percentage (40%) of samples with sperm concentrations above 200 × 106 mL–1. The percentage motility and progressive motility was similar from all protocols. Considerable amounts of spermatozoa were expressed by R. temporaria into their holding water. We tested hormonal priming and spermiation in the common toad (Bufo bufo) using 0.13 µg g–1 LHRHa administered 24 h before a final spermiating dose of 12.8 IU g–1 hCG. No spermatozoa were expressed in holding water. Priming resulted in 35% more spermatozoa than without; however, there were no differences in sperm concentrations. Primed B. bufo produced spermatozoa with significantly higher percentage motility, but not progressive motility, membrane integrity, or abnormal spermatozoa than unprimed males.

Additional keywords: biodiversity crisis, conservation breeding, hCG, LHRH, spermic urine, threatened species.


References

Baker, A. (2007). Animal ambassadors: an analysis of the effectiveness and conservation impact of ex situ breeding efforts. In ‘Zoos in the 21st Century: Catalysts for Conservation?’ (Eds A. Zimmerman, M. Hatchwell, C. West and R. Lattis.) pp. 139–154. (Cambridge University Press: Cambridge, UK.)

Brown, P. S., and Brown, S. C. (1982). Effects of hypophysectomy and prolactin on the water-balance response of the newt, Taricha torosa. Gen. Comp. Endocrinol. 46, 7–12.
Effects of hypophysectomy and prolactin on the water-balance response of the newt, Taricha torosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks1GhsA%3D%3D&md5=5b821c8425364aaed1b9e6433a4bc855CAS | 7060938PubMed |

Browne, R. K., and Figiel, C. (2011). Amphibian conservation and cryopreservation of sperm, cells and tissues. In ‘Cryopreservation in Aquatic Species’. 2nd edn. (Eds T. R. Tiersch and C. C. Green.) pp. 345–365. (World Aquaculture Society: Baton Rouge, Louisiana, USA.)

Browne, R. K., and Li, H. (2006). Sexually mediated shedding of Myxobolus fallax spores during spermiation of Litoria fallax (anura). Dis. Aquat. Organ. 72, 71–75.
Sexually mediated shedding of Myxobolus fallax spores during spermiation of Litoria fallax (anura).Crossref | GoogleScholarGoogle Scholar | 17067075PubMed |

Browne, R. K., Clulow, J., Mahony, M., and Clark, A. (1998). Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology 37, 339–345.
Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm.Crossref | GoogleScholarGoogle Scholar | 9917350PubMed |

Browne, R. K., Davis, J., Pomering, M., and Clulow, J. (2002). Storage of cane toad (Bufo marinus) sperm for 6 days at 0°C with subsequent cryopreservation. Reprod. Fertil. Dev. 14, 267–273.
Storage of cane toad (Bufo marinus) sperm for 6 days at 0°C with subsequent cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jgsFKjsg%3D%3D&md5=56334e97382485482a4ab5f2b4d6362bCAS | 12467350PubMed |

Browne, R. K., Li, H., Seratt, J., and Kouba, A. (2006a). Progesterone improves the number and quality of hormonally induced Fowler toad (Bufo fowleri) oocytes. Reprod. Biol. Endocrinol. 4, 3.
Progesterone improves the number and quality of hormonally induced Fowler toad (Bufo fowleri) oocytes.Crossref | GoogleScholarGoogle Scholar | 16451718PubMed |

Browne, R. K., Seratt, J., Vance, C., and Kouba, A. (2006b). Hormonal priming, induction of ovulation, and in vitro fertilization of the endangered Wyoming toad (Bufo baxteri). Reprod. Biol. Endocrinol. 4, 34.
Hormonal priming, induction of ovulation, and in vitro fertilization of the endangered Wyoming toad (Bufo baxteri).Crossref | GoogleScholarGoogle Scholar | 16790071PubMed |

Browne, R. K., Li, H., Robinson, H., Uteshev, V. K., Shishova, N. R., McGinnity, D., Nofs, S., Figiel, C. R., Mansour, N., Lloyd, R. E., Agnew, D., Carleton, C., Wu, M., and Gakhova, E. N. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ. J. Herpetol. 18, 165–174.

Burgos, M. H., and Ladman, A. J. (1955). Effect of purified gonadotropins upon release of spermatozoa in the frog, Rana pipiens. Proc. Soc. Exp. Biol. Med. 88, 484–487.
| 1:CAS:528:DyaG2MXltVWnsQ%3D%3D&md5=83fa2389f013d4e36ce950176eebcd48CAS | 14371674PubMed |

Burgos, M. H., and Vitale-Calpe, R. (1967). The mechanism of spermiation in the toad. Am. J. Anat. 120, 227–251.
The mechanism of spermiation in the toad.Crossref | GoogleScholarGoogle Scholar |

Chatterjee, A., Bhaduri, S., and Basumallik, A. K. (1971). The ability of hCG in the induction of spermiation in toads devoid of an endogenous source of gonadotropin. Endokrinologie 58, 119–120.
| 1:CAS:528:DyaE3MXksVKjtLk%3D&md5=55f478d22d0360d3a9b0e32a122d7450CAS | 5561786PubMed |

Clulow, J., Mahony, M., Browne, R. K., Pomering, M., and Clark, A. (1999). Applications of assisted reproductive technologies (ART) to endangered amphibian species. In ‘Declines and Disappearance of Australian Frogs’. (Ed. A. Campbell.) pp. 219–225. (Environment Australia: Canberra, Australia.)

Easley, K. A., Culley, D. D., , Horseman, N. D., and Penkala, J. E. (1979). Environmental influences on hormonally induced spermiation of the bullfrog, Rana catesbeiana. J. Exp. Zool. 207, 407–416.
Environmental influences on hormonally induced spermiation of the bullfrog, Rana catesbeiana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFyjsbk%3D&md5=7b8b6df8d6453fc1e51c16a672cd9f81CAS |

Evans, J. J. (1996). Oxytocin and the control of LH. J. Endocr 151, 169–174.
Oxytocin and the control of LH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVCisr4%3D&md5=20abfeed7ecca252ba25993f993c6fb6CAS | 8958776PubMed |

Fitzsimmons, C., McLaughlin, E. A., Mahony, M. J., and Clulow, J. (2007). Optimisation of handling, activation and assessment procedures for Bufo marinus spermatozoa. Reprod. Fertil. Dev. 19, 594–601.
Optimisation of handling, activation and assessment procedures for Bufo marinus spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyisbc%3D&md5=28c74018a2a6b5a16ed3844dec3c8ae5CAS | 17524305PubMed |

Frazer, J. F. (1954). The spermiation response of the male toad (Bufo bufo) when gonadotrophin is given three hours after a subthreshold priming dose. J. Physiol. 125, 58..

Gascon, C., Collins, J. P., Moore, R. D., Church, D. R., McKay, J. E., and Mendelson, J. R., III (Eds) (2007). ‘Amphibian Conservation Action Plan’. (IUCN/SSC Amphibian Specialist Group: Gland, Switzerland and Cambridge, UK).

Goncharov, B. F., Shubravy, O. I., Serbinova, I. A., and Uteshev, V. K. (1989). The USSR programme for breeding amphibians, including rare and endangered species. Int. Zoo Yearb. 28, 10–21.

Hanbing, X., Jianyi, L., Yianquig, Y., and XiZhi, L. (2006). Artificial propagation of tank-cultured giant salamander (Anrias davidianus). Acta Hydrobiologica Sinica 30, 530–534.

Iimori, E., D’Occhio, M. J., Lisle, A. T., and Johnston, S. (2005). Testosterone secretion and pharmacological spermatozoal recovery in the cane toad. Anim. Reprod. Sci. 90, 163–173.
Testosterone secretion and pharmacological spermatozoal recovery in the cane toad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKmt7rO&md5=09fc23c183db0623bc8430ebf0cf2b79CAS | 16257605PubMed |

Kaurova, S. A., Uteshev, V. K., Chekurova, N. R., and Gakhova, E. N. (1997). Cryopreservation of testis of frog Rana temporaria. Infusionstherapie 24, 78..

Ko, S. K., Kang, H. M., Im, W. B., and Kwon, H. B. (1998). Testicular cycles in three species of Korean frogs: Rana nigromaculata, Rana rugosa and Rana dybowskii. Gen. Comp. Endocrinol. 11, 347–358.

Lipke, C. (2008). Induced spermiation and sperm morphology in the green poison frog, Dendrobates aura. PhD Thesis, University of Veterinary Medicine, Hannover, Germany.

Lipke, C., Meinecke-Tillmann, S., Meyer, W., and Meinecke, B. (2009). Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal-induced spermiation (Amphibia, Anura, Dendrobatidae). Anim. Reprod. Sci. 113, 177–186.
Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal-induced spermiation (Amphibia, Anura, Dendrobatidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFeltbg%3D&md5=0fc308bd0c41f29ced12e04ace6088cdCAS | 18657373PubMed |

Lapthorn, A. J., Harris, D.C., Littlejohn, A., Lustbader, J. W., Canfield, R. E., Machin, K. J., Morgan, F. J., and Isaacs, N. W. (1994). Crystal structure of human chorionic gonadotropin. Nature 369, 455–461.
Crystal structure of human chorionic gonadotropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1Ois7g%3D&md5=284d1bae05147bd54e62b95585923040CAS | 8202136PubMed |

Mainini, C.G. (1947). Pregnancy test using the male toad. J. Clin. Endocrinol. Metab. 7, 653–658.
Pregnancy test using the male toad.Crossref | GoogleScholarGoogle Scholar |

Mann, R. M., Hyne, R. V., and Choung, C. B. (2010). Hormonal induction of spermiation, courting behaviour and spawning in the southern bell frog, Litoria raniformis. Zoo Biol. 29, 774–782.
Hormonal induction of spermiation, courting behaviour and spawning in the southern bell frog, Litoria raniformis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOnsL4%3D&md5=70d4762c3fdb29860826851e5f168091CAS | 20549714PubMed |

Mansour, N., Lahnsteiner, F., and Patzner, R. A. (2009). Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 72, 1221–1228.
Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCgtr3J&md5=df02b73135ddec76cf1e061b383d7808CAS | 19766299PubMed |

Mansour, N., Lahnsteiner, F., and Patzner, R. A. (2010). Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria. Theriogenology 74, 724–732.
Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbjM&md5=d25f65f6230c50f18571a63fbe9bcdd1CAS | 20537698PubMed |

Mathieson, W. B. (1996). Development of arginine vasotocin innervation in two species of anuran amphibian: Rana catesbeiana and Rana sylvatica. Histochem. Cell Biol. 105, 305–318.
Development of arginine vasotocin innervation in two species of anuran amphibian: Rana catesbeiana and Rana sylvatica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1ehtL8%3D&md5=4e1b185ed90964a45527018826a98e7dCAS | 9072187PubMed |

Melamed, P., Gong, Z., Fletcher, G., and Hew, C. L. (2002). The potential impact of modern biotechnology on fish aquaculture. Aquaculture 204, 255–269.
The potential impact of modern biotechnology on fish aquaculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFSmtg%3D%3D&md5=79f5561cbb100efaeedd246f103a3c06CAS |

Minucci, S., Di Matteo, L., Chieffi Baccari, G., and Pierantoni, R. (1989). A gonadotropin-releasing hormone analogue induces spermiation in intact and hypophysectomized frogs, Rana esculenta. Experientia 45, 1118–1121.
A gonadotropin-releasing hormone analogue induces spermiation in intact and hypophysectomized frogs, Rana esculenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXnsVartQ%3D%3D&md5=f33bd3688d78366668d432a7925862b8CAS | 2513222PubMed |

Nootprapan, T., and Pariyanonth, P. (1991). Induction of ovulation and spermiation in the bullfrog (Rana catesbeiana) outside of the normal breeding season by GnRH analogue. J. Sci. Res. Chula. Univ 16, 97–101.

Norris, D. O., and Duvall, D. (1981). Hormone-induced ovulation in Ambystoma tigrinum: influence of prolactin and thyroxine. J. Exp. Zool. 216, 175–180.
Hormone-induced ovulation in Ambystoma tigrinum: influence of prolactin and thyroxine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVSqsbo%3D&md5=b233a53051b428889138103208fa359bCAS | 7288386PubMed |

Obringer, A. R., O’Brien, J. K., Saunders, R. L., Yamamoto, K., Kikuyama, S., and Roth, T. L. (2000). Characterization of the spermiation response, luteinizing hormone release and sperm quality in the American toad (Bufo americanus) and the endangered Wyoming toad (Bufo baxteri). Reprod. Fertil. Dev. 12, 51–58.
Characterization of the spermiation response, luteinizing hormone release and sperm quality in the American toad (Bufo americanus) and the endangered Wyoming toad (Bufo baxteri).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKlug%3D%3D&md5=e07bfaa59a738eb172e7bbe4067bd7ecCAS | 11194557PubMed |

Ohta, T., Miyake, H., Miura, C., Kamei, H., Aida, K., and Miura, T. (2007). Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica. Biol. Reprod. 77, 970–977.
Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtLnF&md5=78b193a6d95a65244388dfda2946eb12CAS | 17761645PubMed |

Pang, P. K. T. (1977). Osmoregulatory functions of neurohypophysial hormones in fishes and amphibians. Integr. Comp. Biol. 17, 739–749.
Osmoregulatory functions of neurohypophysial hormones in fishes and amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkvVOgtLc%3D&md5=6dc9dc3460854f1143f2e14d08370141CAS |

Pozzi, A. G., Rosemblit, C., and Ceballos, N. R. (2006). Effect of human gonadotropins on spermiation and androgen biosynthesis in the testis of the toad Bufo arenarum (Amphibia, Anura). J. Exp. Zool. 305A, 96–102.
Effect of human gonadotropins on spermiation and androgen biosynthesis in the testis of the toad Bufo arenarum (Amphibia, Anura).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlWisg%3D%3D&md5=cccffd6d37a08361ba33b2a5395ea0e1CAS |

Reynolds, S. J., and Christian, K. A. (2009). Environmental moisture availability and body fluid osmolality in introduced toads, Rhinella marina, in monsoonal northern Australia. J. Herpetol. 43, 326–331.
Environmental moisture availability and body fluid osmolality in introduced toads, Rhinella marina, in monsoonal northern Australia.Crossref | GoogleScholarGoogle Scholar |

Rowson, A. D., Obringer, A. R., and Roth, T. L. (2001). Non-invasive protocols of luteinizing hormone-releasing hormone for inducing spermiation in American (Bufo americanus) and Gulf Coast (Bufo valliceps) toads. Zoo Biol. 20, 63–74.
Non-invasive protocols of luteinizing hormone-releasing hormone for inducing spermiation in American (Bufo americanus) and Gulf Coast (Bufo valliceps) toads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Gmurc%3D&md5=e98d69477def70e10463e737039d321fCAS | 11429778PubMed |

Rugh, R. (1962). Experimental Embryology. Techniques and Procedures. (Burgess Publishing Company: Minneapolis 15, Minnesota.)

Sasso-Cerri, E., Freymüller, E., and Miraglia, S. M. (2005). Testosterone-immunopositive primordial germ cells in the testis of the bullfrog, Rana catesbeiana. J. Anat. 206, 519–523.
Testosterone-immunopositive primordial germ cells in the testis of the bullfrog, Rana catesbeiana.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzhtlentg%3D%3D&md5=80a69d2f934834812f4636368b30240cCAS | 15960762PubMed |

Shishova, N. R., Uteshev, V. K., Kaurova, S. A., Browne, R. K., and Gakhova, E. N. (2011). Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model species. Theriogenology 75, 220–232.
Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2isbnM&md5=f38573028c9982b365d13b038e8174c2CAS | 21040966PubMed |

Shoemaker, V. H., and Waring, H. (1968). Effect of hyphothalamic lesions on the water-balance response of a toad (Bufo marinus). Comp. Biochem. Physiol. 24, 47–54.
Effect of hyphothalamic lesions on the water-balance response of a toad (Bufo marinus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c7ps1Gmtg%3D%3D&md5=0671df835f69496ae8089d99ddd88f39CAS | 5645521PubMed |

Smith-Gill, S. J., and Berven, K. A. (1980). In vitro fertilisation and assessment of male reproductive potential using mammalian gonadotrophin-releasing hormone to induce spermiation in Rana sylvatica. Copeia 1980, 723–728.
In vitro fertilisation and assessment of male reproductive potential using mammalian gonadotrophin-releasing hormone to induce spermiation in Rana sylvatica.Crossref | GoogleScholarGoogle Scholar |

Sodhi, N. S., Bickford, D., Diesmos, A. C., Lee, T. M., Koh, L. P., Brook, B. W., Sekercioglu, C. H., and Bradshaw, C. J. (2008). Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3, e1636..
| 18286193PubMed |

Trudeau, V. L., Somoza, G. M., Natale, G. S., Pauli, B., Wignall, J., Jackman, P., Doe, K., and Schueler, F. W. (2010). Hormonal induction of spawning in four species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist. Reprod. Biol. Endocrinol. 8, 36.
Hormonal induction of spawning in four species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist.Crossref | GoogleScholarGoogle Scholar | 20398399PubMed |

Uchiyama, M., and Konno, N. (2006). Hormonal regulation of ion and water transport in anuran amphibians. Gen. Comp. Endocrinol. 147, 54–61.
Hormonal regulation of ion and water transport in anuran amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVOit7g%3D&md5=9fce9735aa42d788af86fa613b9b02e6CAS | 16472810PubMed |

Waggener, W. L., and Carroll, E. J. (1998). Spermatozoon structure and motility in the anuran Lepidobatrachus laevi. Dev. Growth Differ. 40, 27–34.
Spermatozoon structure and motility in the anuran Lepidobatrachus laevi.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3itleqtQ%3D%3D&md5=02abda8bedba57c33475589d5f6d56f5CAS | 9563908PubMed |

Walker, W. H., and Cheng, J. (2005). FSH and testosterone signalling in Sertoli cells. Reproduction 150, 13–28.

Whitaker, B. R. (2001). Reproduction. In ‘Amphibian Medicine and Captive Husbandry’. (Eds K. M. Wright and B. R. Whitaker.) pp. 285–307. (Krieger Publishing Co.: Malabar, Florida.)