Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

RFD Award Lecture 2010. Hormonal regulation of spermatogenesis: insights from constructing genetic models

D. J. Handelsman
+ Author Affiliations
- Author Affiliations

ANZAC Research Institute, University of Sydney, Sydney, NSW 2139, Australia. Email: djh@anzac.edu.au

Reproduction, Fertility and Development 23(4) 507-519 https://doi.org/10.1071/RD10308
Submitted: 18 November 2010  Accepted: 23 December 2010   Published: 11 April 2011


References

Abel, M. H., Wootton, A. N., Wilkins, V., Huhtaniemi, I., Knight, P. G., and Charlton, H. M. (2000). The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141, 1795–1803.
The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1WnsL0%3D&md5=c218d6a98139a48ce1877c470e679872CAS | 10803590PubMed |

Abraham, G. E. (1969). Solid-phase radioimmunoassay of estradiol-17 beta. J. Clin. Endocrinol. Metab. 29, 866–870.
Solid-phase radioimmunoassay of estradiol-17 beta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksVKhtr4%3D&md5=81ba7cebfab76e0ceeb3df9b74a95e05CAS | 5783587PubMed |

Allan, C. M., Haywood, M., Swaraj, S., Spaliviero, J., Koch, A., Jimenez, M., Poutanen, M., Levallet, J., Huhtaniemi, I., Illingworth, P., and Handelsman, D. J. (2001). A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 142, 2213–2220.
A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgur8%3D&md5=f43527ae9e069d6ffb6720218cb3279fCAS | 11356665PubMed |

Allan, C. M., Garcia, A., Spaliviero, J., Zhang, F. P., Jimenez, M., Huhtaniemi, I., and Handelsman, D. J. (2004). Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology 145, 1587–1593.
Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1SjurY%3D&md5=f41b3e37d33f40cdba8b188ddf196f68CAS | 14726449PubMed |

Allan, C. M., Garcia, A., Spaliviero, J., Jimenez, M., and Handelsman, D. J. (2006a). Maintenance of spermatogenesis by the activated human (Asp567Gly) FSH receptor during testicular regression due to hormonal withdrawal. Biol. Reprod. 74, 938–944.
Maintenance of spermatogenesis by the activated human (Asp567Gly) FSH receptor during testicular regression due to hormonal withdrawal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jurY%3D&md5=73a8a6a0f4cd585ef6d2b86694ee1f2aCAS | 16452461PubMed |

Allan, C. M., Wang, Y., Jimenez, M., Marshan, B., Spaliviero, J., Illingworth, P., and Handelsman, D. J. (2006b). Follicle-stimulating hormone increases primordial follicle reserve in mature female hypogonadal mice. J. Endocrinol. 188, 549–557.
Follicle-stimulating hormone increases primordial follicle reserve in mature female hypogonadal mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1KjtL8%3D&md5=5e18b6d132a7c661462a72c759ad5703CAS | 16522734PubMed |

Allan, C. M., Lim, P., Robson, M., Spaliviero, J., and Handelsman, D. J. (2009). Transgenic mutant D567G but not wild-type human FSH receptor overexpression provides FSH-independent and promiscuous glycoprotein hormone Sertoli cell signalling. Am. J. Physiol. Endocrinol. Metab. 296, E1022–E1028.
Transgenic mutant D567G but not wild-type human FSH receptor overexpression provides FSH-independent and promiscuous glycoprotein hormone Sertoli cell signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFags7o%3D&md5=596171537e144aecf3b30e3679a5061dCAS | 19293333PubMed |

Allan, C. M., Couse, J. F., Simanainen, U., Spaliviero, J., Jimenez, M., Rodriguez, K., Korach, K. S., and Handelsman, D. J. (2010a). Estradiol induction of spermatogenesis is mediated via an estrogen receptor-α mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion. Endocrinology 151, 2800–2810.
Estradiol induction of spermatogenesis is mediated via an estrogen receptor-α mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtLk%3D&md5=004eae58a6e30d4f97e372721c0877f4CAS | 20410197PubMed |

Allan, C. M., Kalak, R., Dunstan, C. R., McTavish, K. J., Zhou, H., Handelsman, D. J., and Seibel, M. J. (2010b). Follicle-stimulating hormone increases bone mass in female mice. Proc. Natl. Acad. Sci. USA , .
Follicle-stimulating hormone increases bone mass in female mice.Crossref | GoogleScholarGoogle Scholar |

Amoss, M., Burgus, R., Blackwell, R., Vale, W., Fellows, R., and Guillemin, R. (1971). Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochem. Biophys. Res. Commun. 44, 205–210.
Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkslWmsrg%3D&md5=f1d98257a84a4def04db554782bebaf5CAS | 4940370PubMed |

Baines, H., Nwagwu, M. O., Furneaux, E. C., Stewart, J., Kerr, J. B., Mayhew, T. M., and Ebling, F. J. (2005). Estrogenic induction of spermatogenesis in the hypogonadal (hpg) mouse: role of androgens. Reproduction 130, 643–654.
Estrogenic induction of spermatogenesis in the hypogonadal (hpg) mouse: role of androgens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLjO&md5=9612ee9bd33629a81bd265302fd38b20CAS | 16264094PubMed |

Baker, M. A., and Aitken, R. J. (2009). Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev. Proteomics 6, 691–705.
Proteomic insights into spermatozoa: critiques, comments and concerns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKlsrfJ&md5=f1b88a3beb190859ba7795cacef002c4CAS | 19929613PubMed |

Baker, P. J., Pakarinen, P., Huhtaniemi, I. T., Abel, M. H., Charlton, H. M., Kumar, T. R., and O’Shaughnessy, P. J. (2003). Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHbeta-deficient mice: role for constitutive FSH receptor activity. Endocrinology 144, 138–145.
Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHbeta-deficient mice: role for constitutive FSH receptor activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFSntg%3D%3D&md5=00074a05506e411f35cda6000faa4ab8CAS | 12488339PubMed |

Balasubramanian, R., Dwyer, A., Seminara, S. B., Pitteloud, N., Kaiser, U. B., and Crowley, W. F. (2010). Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology 92, 81–99.
Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOmtrrK&md5=40e0d3989951c2f6bc9cc98ed6b25febCAS | 20606386PubMed |

Belchetz, P. E., Plant, T. M., Nakai, Y., Keogh, E. J., and Knobil, E. (1978). Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotrophin-releasing hormone. Science 202, 631–633.
Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotrophin-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FjsFCgtA%3D%3D&md5=fd43dbf8d72000f03d641b5dd23b8bd5CAS | 100883PubMed |

Bergh, A., Damber, J. E., and Widmark, A. (1990). A physiological increase in LH may influence vascular permeability in the rat testis. J. Reprod. Fertil. 89, 23–31.
A physiological increase in LH may influence vascular permeability in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFyjtbc%3D&md5=0b087740ebe068480f1ede89ba8a42e2CAS | 2374116PubMed |

Bergh, A., Damber, J. E., and Hjertkvist, M. (1996). Human chorionic gonadotrophin-induced testicular inflammation may be related to increased sensitivity to interleukin-1. Int. J. Androl. 19, 229–236.
Human chorionic gonadotrophin-induced testicular inflammation may be related to increased sensitivity to interleukin-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1KmtLk%3D&md5=ac387457a96612035d89842ed323dce4CAS | 8940661PubMed |

Bouligand, J., Ghervan, C., Trabado, S., Brailly-Tabard, S., Guiochon-Mantel, A., and Young, J. (2010). Genetic defects in GNRH1: a paradigm of hypothalamic congenital gonadotrophin deficiency. Brain Res. 1364, 3–9.
Genetic defects in GNRH1: a paradigm of hypothalamic congenital gonadotrophin deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyht7zO&md5=24708a605025508503eed7f4a6cb82c5CAS | 20887715PubMed |

Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A. W., Warren, R., and Palmiter, R. D. (1981). Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231.
Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XpvVGrug%3D%3D&md5=d8b0c1477f2b52f590b0bee07517f438CAS | 6276022PubMed |

Butenandt, A., and Hanisch, G. (1935). Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17)-one-(3) (Testosterone): Umweg zur darstellung des testosterons aus Cholsterin (vorlauf mitteilung). Zeischrift Physiologische Chemie 237, 89–97.
| 1:CAS:528:DyaA28Xls1Oi&md5=f2a2524589beb08b68d621f67215291dCAS |

Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A., and Fink, G. (1977). Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340.
Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXitVSksw%3D%3D&md5=a0962c7ba6ab1cdc82d8a733ae2be3cdCAS | 198666PubMed |

Chang, C., Chen, Y. T., Yeh, S. D., Xu, Q., Wang, R. S., Guillou, F., Lardy, H., and Yeh, S. (2004). Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc. Natl. Acad. Sci. USA 101, 6876–6881.
Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFerurY%3D&md5=600bc9b4133fee33e3e56316e96dddb8CAS |

Charlton, H. (2004). Neural transplantation in hypogonadal (hpg) mice – physiology and neurobiology. Reproduction 127, 3–12.
Neural transplantation in hypogonadal (hpg) mice – physiology and neurobiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOitbc%3D&md5=b09f0815c72fcf5a4233ea16adec4d5bCAS | 15056765PubMed |

Chiang, C., Chiu, M., Moore, A. J., Anderson, P. H., Ghasem-Zadeh, A., McManus, J. F., Ma, C., Seeman, E., Clemens, T. L., Morris, H. A., Zajac, J. D., and Davey, R. A. (2009). Mineralization and bone resorption are regulated by the androgen receptor in male mice. J. Bone Miner. Res. 24, 621–631.
Mineralization and bone resorption are regulated by the androgen receptor in male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2ksrk%3D&md5=506fc5300669bb67f95cbb5607b48e53CAS | 19049333PubMed |

Costagliola, S., Urizar, E., Mendive, F., and Vassart, G. (2005). Specificity and promiscuity of gonadotrophin receptors. Reproduction 130, 275–281.
Specificity and promiscuity of gonadotrophin receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisrzL&md5=a8a32d5c1efb03d6c5d86c60e23fec27CAS | 16123234PubMed |

Crawford, B. A., and Handelsman, D. J. (1994). Failure of recombinant growth hormone or insulin-like growth factor-I to influence gonadotrophin sensitivity of the non-human primate testis in vivo. Eur. J. Endocrinol. 131, 405–412.
Failure of recombinant growth hormone or insulin-like growth factor-I to influence gonadotrophin sensitivity of the non-human primate testis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslartbg%3D&md5=363459fea1e8ecd358a48ee40079c793CAS | 7921230PubMed |

Crawford, B. A., and Handelsman, D. J. (1996). Androgens regulate circulating levels of IGF-I and IGFBP-3 during puberty in the male baboon. J. Clin. Endocrinol. Metab. 81, 65–72.
Androgens regulate circulating levels of IGF-I and IGFBP-3 during puberty in the male baboon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVymtg%3D%3D&md5=6890b7400d7cec943b1276faf65b08e5CAS | 8550796PubMed |

Crawford, B. A., Singh, J., Simpson, J. M., and Handelsman, D. J. (1993). Androgen regulation of circulating insulin-like growth factor-I during puberty in male hypogonadal mice. J. Endocrinol. 139, 57–65.
Androgen regulation of circulating insulin-like growth factor-I during puberty in male hypogonadal mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlyhtQ%3D%3D&md5=e8c86e59fa538b685264da2677f9a6ccCAS | 8254294PubMed |

Crawford, B. A., Dobbie, P., Bass, J. J., Lewitt, M. S., Baxter, R. C., and Handelsman, D. J. (1994). Growth hormone (GH) regulation of circulating insulin-like growth factor-I levels during sexual maturation of the GH-deficient dwarf (dw/dw) male rat. J. Endocrinol. 141, 393–401.
Growth hormone (GH) regulation of circulating insulin-like growth factor-I levels during sexual maturation of the GH-deficient dwarf (dw/dw) male rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFSnsL8%3D&md5=55ecf3523d31a5128a5b0ce8d8742511CAS | 7520929PubMed |

Crawford, B. A., Spaliviero, J., Simpson, J., and Handelsman, D. J. (1997). Androgen effects on bioactive and immunoreactive gonadotrophin levels during puberty in male baboons. J. Pediatr. Endocrinol. Metab. 10, 401–410.
| 1:STN:280:DyaK1c%2FjtV2nsA%3D%3D&md5=3685a118d44a5e440406c69637c96719CAS | 9364367PubMed |

Crawford, B. A., Spaliviero, J. A., Simpson, J. M., and Handelsman, D. J. (1998). Testing the gonadal regression–cytoprotection hypothesis. Cancer Res. 58, 5105–5109.
| 1:CAS:528:DyaK1cXnsFSmt7k%3D&md5=96498792c39c91d7bf6437c73261267aCAS | 9823319PubMed |

Dahlqvist, P., Koskinen, L. O., Brannstrom, T., and Hagg, E. (2010). Testicular enlargement in a patient with a FSH-secreting pituitary adenoma. Endocrine 37, 289–293.
Testicular enlargement in a patient with a FSH-secreting pituitary adenoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVSntro%3D&md5=d483ab696fd2998bdbf68efd8e830cc9CAS | 20960265PubMed |

Damber, J. E., Bergh, A., and Daehlin, L. (1985). Testicular blood flow, vascular permeability and testosterone production after stimulation of unilaterally cryptorchid adult rats with human chorionic gonadotrophin. Endocrinology 117, 1906–1913.
Testicular blood flow, vascular permeability and testosterone production after stimulation of unilaterally cryptorchid adult rats with human chorionic gonadotrophin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVKqsrw%3D&md5=7a6e74f5310a0c6f53c0ddab947e1826CAS | 2864238PubMed |

Danna, K., and Nathans, D. (1971). Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc. Natl Acad. Sci. USA 68, 2913–2917.
Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE38%2FnsFWnsw%3D%3D&md5=f1d4ca69d0442a1ba6a552dfc3450179CAS |

David, K., Dingmanse, E., Freud, J., and Lacqueur, E. (1935). Uber krystallinisches mannliches Hormon aus Hoden (Testosteron), wirksamer als aus Harn oder aus Cholestrin bereites Androsteron. Zeischrift Physiologische Chemie 233, 281–282.
| 1:CAS:528:DyaA2MXjvFKrsQ%3D%3D&md5=991fea9070590ca463873c59fc1feaa9CAS |

De Gendt, K., Swinnen, J. V., Saunders, P. T., Schoonjans, L., Dewerchin, M., Devos, A., Tan, K., Atanassova, N., Claessens, F., Lecureuil, C., Heyns, W., Carmeliet, P., Guillou, F., Sharpe, R. M., and Verhoeven, G. (2004). A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA 101, 1327–1332.
A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWjtbw%3D&md5=ee2fcfc8e8d677910d571726c8ec4064CAS |

de Kretser, D. M., McLachlan, R. I., Robertson, D. M., and Wreford, N. G. (1992). Control of spermatogenesis by follicle-stimulating hormone and testosterone. Baillieres Clin. Endocrinol. Metab. 6, 335–354.
Control of spermatogenesis by follicle-stimulating hormone and testosterone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zhtlalsw%3D%3D&md5=57b7d9713ff665e9dd0b98a87378c567CAS | 1616448PubMed |

Dierich, A., Sairam, M. R., Monaco, L., Fimia, G. M., Gansmuller, A., LeMeur, M., and Sassone-Corsi, P. (1998). Impairing follicle-stimulating hormone (FSH) signalling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. USA 95, 13 612–13 617.
Impairing follicle-stimulating hormone (FSH) signalling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVGgtrw%3D&md5=98de318b3f5b5cd8419d2b0bb1c97b4eCAS |

Ebling, F. J., Brooks, A. N., Cronin, A. S., Ford, H., and Kerr, J. B. (2000). Estrogenic induction of spermatogenesis in the hypogonadal mouse. Endocrinology 141, 2861–2869.
Estrogenic induction of spermatogenesis in the hypogonadal mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1CmsLo%3D&md5=9d1cb5820c1e91a8e147555b4618e427CAS | 10919273PubMed |

Furuyama, S., Mayes, D. M., and Nugent, C. A. (1970). A radioimmunoassay for plasma testosterone. Steroids 16, 415–428.
A radioimmunoassay for plasma testosterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXms1Y%3D&md5=910f4fcd1383394c7024f157c71aff72CAS | 5533947PubMed |

Gao, J., Tiwari-Pandey, R., Samadfam, R., Yang, Y., Miao, D., Karaplis, A. C., Sairam, M. R., and Goltzman, D. (2007). Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone. Endocrinology 148, 2613–2621.
Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1ajtrs%3D&md5=2a2fb11299c69d7ea0ca5316629d6847CAS | 17332067PubMed |

Gibson, M. J., Wu, T. J., Miller, G. M., and Silverman, A. J. (1997). What nature’s knockout teaches us about GnRH activity: hypogonadal mice and neuronal grafts. Horm. Behav. 31, 212–220.
What nature’s knockout teaches us about GnRH activity: hypogonadal mice and neuronal grafts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslajurs%3D&md5=cd41c37a676afd6068e4fb2a25acde36CAS | 9213135PubMed |

Gosden, R. G., Wade, J. C., Fraser, H. M., Sandow, J., and Faddy, M. J. (1997). Impact of congenital or experimental hypogonadotrophism on the radiation sensitivity of the mouse ovary. Hum. Reprod. 12, 2483–2488.
Impact of congenital or experimental hypogonadotrophism on the radiation sensitivity of the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1SlsQ%3D%3D&md5=ebc1f2ba030936d8c1bf4d8d20af1f68CAS | 9436690PubMed |

Gromoll, J., Simoni, M., and Nieschlag, E. (1996). An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J. Clin. Endocrinol. Metab. 81, 1367–1370.
An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1Onsrc%3D&md5=c7c3c8c7c01f4e1e97449e545a1b805cCAS | 8636335PubMed |

Handelsman, D. J., Spaliviero, J. A., Simpson, J. M., Allan, C. M., and Singh, J. (1999). Spermatogenesis without gonadotrophins: maintenance has a lower testosterone threshold than initiation. Endocrinology 140, 3938–3946.
Spermatogenesis without gonadotrophins: maintenance has a lower testosterone threshold than initiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslSrs7w%3D&md5=2015a4db2afe02591e027bfca6101545CAS | 10465262PubMed |

Hansson, V., Calandra, R., Purvis, K., Ritzen, M., and French, F. S. (1976). Hormonal regulation of spermatogenesis. Vitam. Horm. 34, 187–214.
Hormonal regulation of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhtFyjtb0%3D&md5=7dbc9f1a19f50b9b4cfde175226e931eCAS | 828355PubMed |

Haywood, M., Spaliviero, J., Jimemez, M., King, N. J., Handelsman, D. J., and Allan, C. M. (2003). Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology 144, 509–517.
Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWltrY%3D&md5=f0772155f84dc0b1f9432acdf88d9bbfCAS | 12538611PubMed |

Heller, C. G., and Clermont, Y. (1963). Spermatogenesis in man: an estimate of its duration. Science 140, 184–186.
Spermatogenesis in man: an estimate of its duration.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF387ksFeisg%3D%3D&md5=ef26130f4a4cf3d869d8821cd3356961CAS | 13953583PubMed |

Heller, C. H., and Clermont, Y. (1964). Kinetics of the germinal epithelium in man. Recent Prog. Horm. Res. 20, 545–575.
| 1:STN:280:DyaF2M%2FovFKitQ%3D%3D&md5=b1bce61cc5048a24e122fd0b34db8c75CAS | 14285045PubMed |

Hess, R. A., Bunick, D., Lee, K. H., Bahr, J., Taylor, J. A., Korach, K. S., and Lubahn, D. B. (1997). A role for oestrogens in the male reproductive system. Nature 390, 509–512.
A role for oestrogens in the male reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvF2gu74%3D&md5=94154a3483937a2648b6783f677fd677CAS | 9393999PubMed |

Holdcraft, R. W., and Braun, R. E. (2004). Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131, 459–467.
Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVSrur8%3D&md5=ee3bd77db9a5b21242e73f3dbe75865eCAS | 14701682PubMed |

Hu, Y. C., Wang, P. H., Yeh, S., Wang, R. S., Xie, C., Xu, Q., Zhou, X., Chao, H. T., Tsai, M. Y., and Chang, C. (2004). Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc. Natl. Acad. Sci. USA 101, 11 209–11 214.
Subfertility and defective folliculogenesis in female mice lacking androgen receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKgtro%3D&md5=ed9fe5c8686b6bb0d0bc7d6ab524fba1CAS |

Huhtaniemi, I. (2000). The Parkes lecture. Mutations of gonadotrophin and gonadotrophin receptor genes: what do they teach us about reproductive physiology? J. Reprod. Fertil. 119, 173–186.
| 1:CAS:528:DC%2BD3cXltlylsbw%3D&md5=246d78f4e034f7b81daf201742863d66CAS | 10864828PubMed |

Huhtaniemi, I., Ahtiainen, P., Pakarainen, T., Rulli, S. B., Zhang, F. P., and Poutanen, M. (2006). Genetically modified mouse models in studies of luteinising hormone action. Mol. Cell. Endocrinol. 252, 126–135.
Genetically modified mouse models in studies of luteinising hormone action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlajsLo%3D&md5=4741ef60557d4b25cd52cc98e611b20fCAS | 16675102PubMed |

Jamsai, D., and O’Bryan, M. K. (2010). Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators. Syst. Biol. Reprod. Med. 56, 246–259.
Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt12rur8%3D&md5=70bc24a952bcfb676a7f290eace227f1CAS | 20536324PubMed |

Jimenez, M., Spaliviero, J. A., Grootenhuis, A. J., Verhagen, J., Allan, C. M., and Handelsman, D. J. (2005). Validation of an ultrasensitive and specific immunofluorometric assay for mouse follicle-stimulating hormone. Biol. Reprod. 72, 78–85.
Validation of an ultrasensitive and specific immunofluorometric assay for mouse follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKl&md5=dc206791d59030703d6ee6c20985c189CAS | 15342359PubMed |

Jin, C., McKeehan, K., and Wang, F. (2003). Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle and ductus deferens. Prostate 57, 160–164.
Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle and ductus deferens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFKqtL0%3D&md5=3796e47a59f3a0c566ef6a4879d1f936CAS | 12949940PubMed |

Kahn, C. R., and Roth, J. (1975). Cell membrane receptors for polypeptide hormones. Application to the study of disease states in mice and men. Am. J. Clin. Pathol. 63, 656–667.
| 1:CAS:528:DyaE2MXltVylsbc%3D&md5=4d074139bd58ce9760915d89b33457e1CAS | 165705PubMed |

Kennedy, C. L., O’Connor, A. E., Sanchez-Partida, L. G., Holland, M. K., Goodnow, C. C., de Kretser, D. M., and O’Bryan, M. K. (2005). A repository of ENU mutant mouse lines and their potential for male fertility research. Mol. Hum. Reprod. 11, 871–880.
A repository of ENU mutant mouse lines and their potential for male fertility research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVektrs%3D&md5=0cdd621db6b0ad944cd6140c2103ad8fCAS | 16421219PubMed |

Kerr, J. B., Loveland, K. L., O’Bryan, M. K., and de Kretser, D. M. (2006) Cytology of the testis and intrinsic control mechanisms. In ‘Physiology of Reproduction. Vol. 1’. 3rd edn. (Ed. J. D. Neill.) pp. 827–947. (Elsevier: Amsterdam.)

Koller, B. H., and Smithies, O. (1989). Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 8932–8935.
Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslajtQ%3D%3D&md5=d6a1fc07a2c9b2d15c8f8a8a3700a8abCAS |

Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121.
Male development of chromosomally female mice transgenic for Sry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVagsrk%3D&md5=4503b06d0a2f704c2b7e0b7aeea58a7eCAS | 2030730PubMed |

Kothari, L. K., and Gupta, A. S. (1978). The total Leydig cell volume of the testis in some common mammals. Andrologia 10, 218–222.
| 1:STN:280:DyaE1c3lsV2itw%3D%3D&md5=a50ba67f9f1758fb45e5a42d6fff58ccCAS | 686402PubMed |

Krieger, D. T., Perlow, M. J., Gibson, M. J., Davies, T. F., Zimmerman, E. A., Ferin, M., and Charlton, H. M. (1982). Brain grafts reverse hypogonadism of gonadotrophin-releasing hormone deficiency. Nature 298, 468–471.
Brain grafts reverse hypogonadism of gonadotrophin-releasing hormone deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsFShtw%3D%3D&md5=6c66918cea7df556e41c50a22062351aCAS | 7045700PubMed |

Kumar, T. R., Wang, Y., Lu, N., and Matzuk, M. M. (1997). FSH is required for ovarian follicle maturation but not for male fertility. Nat. Genet. 15, 201–204.
FSH is required for ovarian follicle maturation but not for male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVOks7c%3D&md5=72f5bab2e0830f90665df82f6b6e744fCAS | 9020850PubMed |

Lécureuil, C., Fontaine, I., Crepieux, P., and Guillou, F. (2002). Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 33, 114–118.
Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 12124943PubMed |

Lei, Z. M., Mishra, S., Zou, W., Xu, B., Foltz, M., Li, X., and Rao, C. V. (2001). Targeted disruption of luteinizing hormone/human chorionic gonadotrophin receptor gene. Mol. Endocrinol. 15, 184–200.
Targeted disruption of luteinizing hormone/human chorionic gonadotrophin receptor gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVKlsg%3D%3D&md5=268d77cf712d624b718bc018a9466f65CAS | 11145749PubMed |

Lei, Z. M., Mishra, S., Ponnuru, P., Li, X., Yang, Z. W., and Rao Ch, V. (2004). Testicular phenotype in luteinizing hormone receptor knockout animals and the effect of testosterone replacement therapy. Biol. Reprod. 71, 1605–1613.
Testicular phenotype in luteinizing hormone receptor knockout animals and the effect of testosterone replacement therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yisbk%3D&md5=794824c56c4b25cf8cafe87a77296d05CAS | 15253923PubMed |

Lim, P., Allan, C. M., Notini, A. J., Axell, A. M., Spaliviero, J., Jimenez, M., Davey, R., McManus, J., MacLean, H. E., Zajac, J. D., and Handelsman, D. J. (2008). Oestradiol-induced spermatogenesis requires a functional androgen receptor. Reprod. Fertil. Dev. 20, 861–870.
Oestradiol-induced spermatogenesis requires a functional androgen receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks77F&md5=1b3905a056584596bcd981d66d0eb773CAS | 19007549PubMed |

Lim, P., Robson, M., Spaliviero, J., McTavish, K. J., Jimenez, M., Zajac, J. D., Handelsman, D. J., and Allan, C. M. (2009). Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology 150, 4755–4765.
Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktrvL&md5=25179808e660b0c59c3403ed1f989da1CAS | 19574395PubMed |

Liu, P. Y., Gebski, V. J., Turner, L., Conway, A. J., Wishart, S. M., and Handelsman, D. J. (2002). Predicting pregnancy and spermatogenesis by survival analysis during gonadotrophin treatment of gonadotrophin-deficient infertile men. Hum. Reprod. 17, 625–633.
Predicting pregnancy and spermatogenesis by survival analysis during gonadotrophin treatment of gonadotrophin-deficient infertile men.Crossref | GoogleScholarGoogle Scholar | 11870114PubMed |

Liu, P. Y., Swerdloff, R. S., Anawalt, B. D., Anderson, R. A., Bremner, W. J., Elliesen, J., Gu, Y. Q., Kersemaekers, W. M., McLachlan, R. I., Meriggiola, M. C., Nieschlag, E., Sitruk-Ware, R., Vogelsong, K., Wang, X. H., Wu, F. C., Zitzmann, M., Handelsman, D. J., and Wang, C. (2008). Determinants of the rate and extent of spermatogenic suppression during hormonal male contraception: an integrated analysis. J. Clin. Endocrinol. Metab. 93, 1774–1783.
Determinants of the rate and extent of spermatogenic suppression during hormonal male contraception: an integrated analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFWgsL0%3D&md5=ea4e0a179e086157e4684dc1abd307b1CAS | 18303073PubMed |

Liu, P. Y., Baker, H. W., Jayadev, V., Zacharin, M., Conway, A. J., and Handelsman, D. J. (2009). Induction of spermatogenesis and fertility during gonadotrophin treatment of gonadotrophin-deficient infertile men: predictors of fertility outcome. J. Clin. Endocrinol. Metab. 94, 801–808.
Induction of spermatogenesis and fertility during gonadotrophin treatment of gonadotrophin-deficient infertile men: predictors of fertility outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wmsbo%3D&md5=bd0863e907e546fb6b4d66a0d85160cdCAS | 19066302PubMed |

Livne, I., Silverman, A. J., and Gibson, M. J. (1992). Reversal of reproductive deficiency in the hpg male mouse by neonatal androgenization. Biol. Reprod. 47, 561–567.
Reversal of reproductive deficiency in the hpg male mouse by neonatal androgenization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlWmu78%3D&md5=8252b19ea5e6cfe7fe507f2c8cc6e709CAS | 1391342PubMed |

Ly, L. P., Liu, P. Y., and Handelsman, D. J. (2005). Rates of suppression and recovery of human sperm output in testosterone-based hormonal contraceptive regimens. Hum. Reprod. 20, 1733–1740.
Rates of suppression and recovery of human sperm output in testosterone-based hormonal contraceptive regimens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVSjsLc%3D&md5=12fb09fc4cdda3e23fdc1695561af9f1CAS | 15860500PubMed |

Lyon, M. F., and Glenister, P. H. (1974). Evidence from Tfm-O that androgen is inessential for reproduction in female mice. Nature 247, 366–367.
Evidence from Tfm-O that androgen is inessential for reproduction in female mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7islarsA%3D%3D&md5=8af4a22bcc3ce2b9172911ef9b793472CAS | 4817855PubMed |

Lyon, M. F., and Hawkes, S. G. (1970). X-linked gene for testicular feminisation in the mouse. Nature 227, 1217–1219.
X-linked gene for testicular feminisation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c3ntVSmsA%3D%3D&md5=27b42a73d38149d1b7bdcd5df6440f5eCAS | 5452809PubMed |

Ma, X., Dong, Y., Matzuk, M. M., and Kumar, T. R. (2004). Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis and infertility. Proc. Natl. Acad. Sci. USA 101, 17 294–17 299.
Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis and infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFansr7F&md5=53dad11032086423446017ce79b6b4d8CAS |

MacLean, H. E., Chiu, W. S., Notini, A. J., Axell, A. M., Davey, R. A., McManus, J. F., Ma, C., Plant, D. R., Lynch, G. S., and Zajac, J. D. (2008). Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 22, 2676–2689.
Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVygs7c%3D&md5=01a61cc27d6abebc1cc1e8f98b2cf68bCAS | 18390925PubMed |

MacLean, H. E., Moore, A. J., Sastra, S. A., Morris, H. A., Ghasem-Zadeh, A., Rana, K., Axell, A.-M., Notini, A. J., Handelsman, D. J., Seeman, E., Zajac, J. D., and Davey, R. A. (2010). DNA binding-dependent androgen receptor signalling contributes to gender differences and has physiological actions in males and females. J. Endocrinol. 206, 93–103.
DNA binding-dependent androgen receptor signalling contributes to gender differences and has physiological actions in males and females.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlCmtr4%3D&md5=a5f4609fa9f5fccb0c78592c299dfbe3CAS | 20395380PubMed |

Maddocks, S., and Setchell, B. P. (1989). Effect of a single injection of human chorionic gonadotrophin on testosterone levels in testicular interstitial fluid, and in testicular and peripheral venous blood in adult rats. J. Endocrinol. 121, 311–316.
Effect of a single injection of human chorionic gonadotrophin on testosterone levels in testicular interstitial fluid, and in testicular and peripheral venous blood in adult rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVKht7w%3D&md5=e685b0876f733ca57c588f11674b9515CAS | 2754365PubMed |

Maddocks, S., Sowerbutts, S. F., and Setchell, B. P. (1987). Effects of repeated injections of human chorionic gonadotrophin on vascular permeability, extracellular fluid volume and the flow of lymph in the testes of rats. Int. J. Androl. 10, 535–542.
Effects of repeated injections of human chorionic gonadotrophin on vascular permeability, extracellular fluid volume and the flow of lymph in the testes of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFagsbY%3D&md5=e7736aacb22f95cbaf38d9b049d93228CAS | 3610362PubMed |

Mason, A. J., Hayflick, J. S., Zoeller, R. T., Young, W. S., Phillips, H. S., Nikolics, K., and Seeburg, P. H. (1986a). A deletion truncating the gonadotrophin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234, 1366–1371.
A deletion truncating the gonadotrophin-releasing hormone gene is responsible for hypogonadism in the hpg mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFSnu7Y%3D&md5=2c6f7100c134102ab11d3eb116e7c05aCAS | 3024317PubMed |

Mason, A. J., Pitts, S., Nikolics, K., Szonyi, E., Wilcox, J. N., Seeburg, P. H., and Stewart, T. H. (1986b). The hypogonadal mouse: reproductive functions restored by gene therapy. Science 234, 1372–1378.
The hypogonadal mouse: reproductive functions restored by gene therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksV2ktw%3D%3D&md5=d632334fa4ed9e8b93fe93d90595a9b6CAS | 3097822PubMed |

Matzuk, M. M., and Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nat. Cell Biol. 4, s33–s40.
Genetic dissection of mammalian fertility pathways.Crossref | GoogleScholarGoogle Scholar | 12479613PubMed |

Matzuk, M. M., and Lamb, D. J. (2008). The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213.
The biology of infertility: research advances and clinical challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCjtL%2FM&md5=eb319efe63e6a87aedd95426657a428bCAS | 18989307PubMed |

Matzuk, M. M., DeMayo, F. J., Hadsell, L. A., and Kumar, T. R. (2003). Overexpression of human chorionic gonadotrophin causes multiple reproductive defects in transgenic mice. Biol. Reprod. 69, 338–346.
Overexpression of human chorionic gonadotrophin causes multiple reproductive defects in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCnur4%3D&md5=b3bb58cf8117ed0093618b008ee726ebCAS | 12672665PubMed |

McTavish, K. J., Jimenez, M., Walters, K. A., Spaliviero, J., Groome, N. P., Themmen, A. P., Visser, J. A., Handelsman, D. J., and Allan, C. M. (2007). Rising follicle-stimulating hormone levels with age accelerate female reproductive failure. Endocrinology 148, 4432–4439.
Rising follicle-stimulating hormone levels with age accelerate female reproductive failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCnurk%3D&md5=c507d902f0db66e43318596cfb8783fbCAS | 17540727PubMed |

Meistrich, M. L., and Shetty, G. (2008). Hormonal suppression for fertility preservation in males and females. Reproduction 136, 691–701.
Hormonal suppression for fertility preservation in males and females.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Cktw%3D%3D&md5=952dca5d91a99e4408aa58b3e5bef960CAS | 18515310PubMed |

Moerman, D. G., and Barstead, R. J. (2008). Towards a mutation in every gene in Caenorhabditis elegans. Brief Funct. Genomic. Proteomic. 7, 195–204.
Towards a mutation in every gene in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslKnu7s%3D&md5=dbc5f1b90cb44a8cea7d9e77c4f48bf0CAS | 18417533PubMed |

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273.
| 1:CAS:528:DyaL2sXkslajtb0%3D&md5=2263045fddd63cd9a2b9e0b471ef68d2CAS | 3472723PubMed |

Nagy, A. (2000). Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109.
Cre recombinase: the universal reagent for genome tailoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVCjtrw%3D&md5=9831011ad4a08e7ccbd5b82666dfc869CAS | 10686599PubMed |

Nordhoff, V., Gromoll, J., Foppiani, L., Luetjens, C. M., Schlatt, S., Kostova, E., Huhtaniemi, I., Nieschlag, E., and Simoni, M. (2003). Targeted expression of human FSH receptor Asp567Gly mutant mRNA in testis of transgenic mice: role of human FSH receptor promoter. Asian J. Androl. 5, 267–275.
| 1:CAS:528:DC%2BD2cXhtFShtLY%3D&md5=8198409b257ee080fceeb10fea8f49d2CAS | 14695976PubMed |

Notini, A. J., McManus, J. F., Moore, A., Bouxsein, M., Jimenez, M., Chiu, W. S., Glatt, V., Kream, B. E., Handelsman, D. J., Morris, H. A., Zajac, J. D., and Davey, R. A. (2007). Osteoblast deletion of Exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J. Bone Miner. Res. 22, 347–356.
Osteoblast deletion of Exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslKgtr4%3D&md5=fabbd876e88e55205c4f87d690ad3443CAS | 17147488PubMed |

O’Donnell, L., Robertson, K. M., Jones, M. E., and Simpson, E. R. (2001). Estrogen and spermatogenesis. Endocr. Rev. 22, 289–318.
Estrogen and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVOgurw%3D&md5=5040d27c2e059cf93d2495f8caa544d5CAS | 11399746PubMed |

O’Donnell, L., Meachem, S. J., Stanton, P. G., and McLachlan, R. I. (2006) Endocrine regulation of spermatogenesis. In ‘Physiology of Reproduction. Vol. 1’. 3rd edn. (Ed. J. D. Neill.) pp. 1017–1069. (Elsevier: Amsterdam.)

O’Malley, B. W., McGuire, W. L., Kohler, P. O., and Korenman, S. G. (1969). Studies on the mechanism of steroid hormone regulation of synthesis of specific proteins. Recent Prog. Horm. Res. 25, 105–160.
| 1:CAS:528:DyaE3cXltVGqurk%3D&md5=ce7dc271ba8f20dc67848e6400368612CAS | 4902947PubMed |

O’Shaughnessy, P. J., Baker, P., Sohnius, U., Haavisto, A. M., Charlton, H. M., and Huhtaniemi, I. (1998). Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology 139, 1141–1146.
Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlejtLc%3D&md5=57538a4a74235c3e02e39ebd79213538CAS | 9492048PubMed |

O’Shaughnessy, P. J., Morris, I. D., Huhtaniemi, I., Baker, P. J., and Abel, M. H. (2009). Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Mol. Cell. Endocrinol. 306, 2–8.
Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ait7o%3D&md5=7f5f85fcdd50169601093cfe30dbe5daCAS | 19059463PubMed |

O’Shaughnessy, P. J., Verhoeven, G., De Gendt, K., Monteiro, A., and Abel, M. H. (2010). Direct action through the Sertoli cells is essential for androgen stimulation of spermatogenesis. Endocrinology 151, 2343–2348.
Direct action through the Sertoli cells is essential for androgen stimulation of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFKgsLk%3D&md5=f66b1e072d0193056ed70cbd71f8e8adCAS | 20228170PubMed |

Ohno, S., Christian, L., and Attardi, B. (1973). Role of testosterone in normal female function. Nat. New Biol. 243, 119–120.
| 1:CAS:528:DyaE3sXks1Cjsb4%3D&md5=f9b48659b591e1e7348f9279f0ed71e9CAS | 4513554PubMed |

Orth, J. M., Gunsalus, G. L., and Lamperti, A. A. (1988). Evidence from Sertoli-cell depleted rats indicates that spermatid number depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122, 787–794.
Evidence from Sertoli-cell depleted rats indicates that spermatid number depends on numbers of Sertoli cells produced during perinatal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7jslWgug%3D%3D&md5=dea5eb7cf9d072ba97945e3f7a5ddc6dCAS | 3125042PubMed |

Pakarainen, T., Zhang, F. P., Makela, S., Poutanen, M., and Huhtaniemi, I. (2005). Testosterone replacement therapy induces spermatogenesis and partially restores fertility in luteinizing hormone receptor knockout mice. Endocrinology 146, 596–606.
Testosterone replacement therapy induces spermatogenesis and partially restores fertility in luteinizing hormone receptor knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlWisA%3D%3D&md5=11240c5b26d2c42a26b18e942a519dd0CAS | 15514086PubMed |

Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C., and Evans, R. M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes. Nature 300, 611–615.
Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltlCjt7s%3D&md5=851d78b785b34861677414f7a29aada4CAS | 6958982PubMed |

Pask, A. J., Kanasaki, H., Kaiser, U. B., Conn, P. M., Janovick, J. A., Stockton, D. W., Hess, D. L., Justice, M. J., and Behringer, R. R. (2005). A novel mouse model of hypogonadotrophic hypogonadism: N-ethyl-N-nitrosourea-induced gonadotrophin-releasing hormone receptor gene mutation. Mol. Endocrinol. 19, 972–981.
A novel mouse model of hypogonadotrophic hypogonadism: N-ethyl-N-nitrosourea-induced gonadotrophin-releasing hormone receptor gene mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVCjsrg%3D&md5=d0fbe6cde1c3aade50d7f73bd42f6c4dCAS | 15625238PubMed |

Peltoketo, H., Strauss, L., Karjalainen, R., Zhang, M., Stamp, G. W., Segaloff, D. L., Poutanen, M., and Huhtaniemi, I. T. (2010). Female mice expressing constitutively active mutants of FSH receptor present with a phenotype of premature follicle depletion and estrogen excess. Endocrinology 151, 1872–1883.
Female mice expressing constitutively active mutants of FSH receptor present with a phenotype of premature follicle depletion and estrogen excess.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Cmurs%3D&md5=09a7ce373b6316f0148c341bd49e0c6eCAS | 20172968PubMed |

Rouach, V., Katzburg, S., Koch, Y., Stern, N., and Somjen, D. (2011). Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH. J. Cell. Biochem. 112, 128–137.
Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2qu74%3D&md5=789a74f79d7e5943661bb521887fe11cCAS | 21053364PubMed |

Rulli, S. B., Ahtiainen, P., Makela, S., Toppari, J., Poutanen, M., and Huhtaniemi, I. (2003). Elevated steroidogenesis, defective reproductive organs and infertility in transgenic male mice overexpressing human chorionic gonadotrophin. Endocrinology 144, 4980–4990.
Elevated steroidogenesis, defective reproductive organs and infertility in transgenic male mice overexpressing human chorionic gonadotrophin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslerurc%3D&md5=ca99822f9364906845deb2b11820a7bbCAS | 12960071PubMed |

Ruzicka, L., and Wettstein, A. (1935). Über die krystallische Herstellung des Testikelhormons, Testosteron (androsten-3-on-17-ol). Helv. Chim. Acta 18, 1264–1275.
Über die krystallische Herstellung des Testikelhormons, Testosteron (androsten-3-on-17-ol).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28XjsVWq&md5=f1a9c4682b49b2959d504654cd81bf8eCAS |

Schally, A. V., Arimura, A., Baba, Y., Nair, R. M., Matsuo, H., Redding, T. W., and Debeljuk, L. (1971). Isolation and properties of the FSH and LH-releasing hormone. Biochem. Biophys. Res. Commun. 43, 393–399.
Isolation and properties of the FSH and LH-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktVSktLk%3D&md5=b840d467ee9afe274cdfe8b616fb27bbCAS | 4930860PubMed |

Seibel, M. J., Dunstan, C. R., Zhou, H., Allan, C. M., and Handelsman, D. J. (2006). Sex steroids, not FSH, influence bone mass. Cell 127, 1079.
Sex steroids, not FSH, influence bone mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1ehsQ%3D%3D&md5=b4ea058e1cba068a3d24db3a26adb7b7CAS | 17174881PubMed |

Sen, A., and Hammes, S. R. (2010). Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol. 24, 1393–1403.
Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1CntrY%3D&md5=9b76d37cad136ab02089e7bb906fd97dCAS | 20501640PubMed |

Setchell, B. P., and Rommerts, F. F. (1985). The importance of the Leydig cells in the vascular response to hCG in the rat testis. Int. J. Androl. 8, 436–440.
The importance of the Leydig cells in the vascular response to hCG in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktlGrsLs%3D&md5=df6fec23909cdd250668599312bdf8afCAS | 3011682PubMed |

Setchell, B. P., and Sharpe, R. M. (1981). Effect of injected human chorionic gonadotrophin on capillary permeability, extracellular fluid volume and the flow of lymph and blood in the testes of rats. J. Endocrinol. 91, 245–254.
Effect of injected human chorionic gonadotrophin on capillary permeability, extracellular fluid volume and the flow of lymph and blood in the testes of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XpslyltA%3D%3D&md5=655ad6ab858c49e37718a6678b453697CAS | 7299325PubMed |

Sharpe, R. M. (1994) Regulation of spermatogenesis. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 1363–1434. (Raven Press Ltd: New York.)

Shiina, H., Matsumoto, T., Sato, T., Igarashi, K., Miyamoto, J., Takemasa, S., Sakari, M., Takada, I., Nakamura, T., Metzger, D., Chambon, P., Kanno, J., Yoshikawa, H., and Kato, S. (2006). Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl. Acad. Sci. USA 103, 224–229.
Premature ovarian failure in androgen receptor-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms12huw%3D%3D&md5=b2508fad6728c1e330d29c2157be021cCAS |

Simanainen, U., McNamara, K., Davey, R. A., Zajac, J. D., and Handelsman, D. J. (2008). Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis. Endocrinology 149, 3330–3338.
Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1amu74%3D&md5=dcaad34a2c2f2ea1cca686c4975c2b15CAS | 18356274PubMed |

Simanainen, U., McNamara, K., Gao, Y. R., and Handelsman, D. J. (2009). Androgen sensitivity of prostate epithelium is enhanced by postnatal androgen receptor inactivation. Am. J. Physiol. Endocrinol. Metab. 296, E1335–E1343.
Androgen sensitivity of prostate epithelium is enhanced by postnatal androgen receptor inactivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVCltL0%3D&md5=087a8e26ddaa14fc203c1d751027eb00CAS | 19366880PubMed |

Simoni, M., Gromoll, J., and Nieschlag, E. (1997). The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology. Endocr. Rev. 18, 739–773.
The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFeg&md5=531e883f71ab5f05f0d9b5545ae8582eCAS | 9408742PubMed |

Singh, J., O’Neill, C., and Handelsman, D. J. (1995). Induction of spermatogenesis by androgens in gonadotrophin-deficient (hpg) mice. Endocrinology 136, 5311–5321.
Induction of spermatogenesis by androgens in gonadotrophin-deficient (hpg) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Kjuro%3D&md5=e449c4cc9da225a67c62cd2cc76e4728CAS | 7588276PubMed |

Smith, P. (1927). The disabilities caused by hypophysectomy and their repair. J. Am. Med. Assoc. 88, 158–161.
| 1:CAS:528:DyaB2sXnvVWn&md5=9ef1373e0111eedcab20c7ec1aa2e4b0CAS |

Smith, P. E. (1930). Hypophysectomy and a replacement therapy in the rat. Am. J. Anat. 45, 205–273.
Hypophysectomy and a replacement therapy in the rat.Crossref | GoogleScholarGoogle Scholar |

Son, G. H., Jung, H., Seong, J. Y., Choe, Y., Geum, D., and Kim, K. (2003). Excision of the first intron from the gonadotrophin-releasing hormone (GnRH) transcript serves as a key regulatory step for GnRH biosynthesis. J. Biol. Chem. 278, 18 037–18 044.
Excision of the first intron from the gonadotrophin-releasing hormone (GnRH) transcript serves as a key regulatory step for GnRH biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Kiurg%3D&md5=593ba48934ab2b85195ffd9c73af90b6CAS |

Sowerbutts, S. F., Jarvis, L. G., and Setchell, B. P. (1986). The increase in testicular vascular permeability induced by human chorionic gonadotrophin involves 5-hydroxytryptamine and possibly oestrogens, but not testosterone, prostaglandins, histamine or bradykinin. Aust. J. Exp. Biol. Med. Sci. 64, 137–147.
The increase in testicular vascular permeability induced by human chorionic gonadotrophin involves 5-hydroxytryptamine and possibly oestrogens, but not testosterone, prostaglandins, histamine or bradykinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVyku7w%3D&md5=3ad832984a628f1a3a027dc8288cb7b7CAS | 2943258PubMed |

Spaliviero, J. A., Jimenez, M., Allan, C. M., and Handelsman, D. J. (2004). Luteinizing hormone receptor-mediated effects on initiation of spermatogenesis in gonadotrophin-deficient (hpg) mice are replicated by testosterone. Biol. Reprod. 70, 32–38.
Luteinizing hormone receptor-mediated effects on initiation of spermatogenesis in gonadotrophin-deficient (hpg) mice are replicated by testosterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOq&md5=c1578bb2d8f2bcfb9ef9d40c4e4afacdCAS | 12954730PubMed |

Steinberger, E. (1971). Hormonal control of mammalian spermatogenesis. Physiol. Rev. 51, 1–22.
| 1:CAS:528:DyaE3MXpsVygsg%3D%3D&md5=04cd8ed6c65515b31f926fbe965b911bCAS |

Sun, L., Peng, Y., Sharrow, A. C., Iqbal, J., Zhang, Z., Papachristou, D. J., Zaidi, S., Zhu, L. L., Yaroslavskiy, B. B., Zhou, H., Zallone, A., Sairam, M. R., Kumar, T. R., Bo, W., Braun, J., Cardoso-Landa, L., Schaffler, M. B., Moonga, B. S., Blair, H. C., and Zaidi, M. (2006). FSH directly regulates bone mass. Cell 125, 247–260.
FSH directly regulates bone mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Oqtbs%3D&md5=c829c5d4bc9cd731c8d9bf7a41abd496CAS | 16630814PubMed |

Sykiotis, G. P., Pitteloud, N., Seminara, S. B., Kaiser, U. B., and Crowley, W. F. (2010). Deciphering genetic disease in the genomic era: the model of GnRH deficiency. Sci. Transl. Med. 2, 32rv2..
| 20484732PubMed |

Tao, Y. X., Mizrachi, D., and Segaloff, D. L. (2002). Chimeras of the rat and human FSH receptors (FSHRs) identify residues that permit or suppress transmembrane 6 mutation-induced constitutive activation of the FSHR via rearrangements of hydrophobic interactions between helices 6 and 7. Mol. Endocrinol. 16, 1881–1892.
Chimeras of the rat and human FSH receptors (FSHRs) identify residues that permit or suppress transmembrane 6 mutation-induced constitutive activation of the FSHR via rearrangements of hydrophobic interactions between helices 6 and 7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCmtbo%3D&md5=8bf0a8e3bec254c3e67600bd9c66ef2bCAS | 12145341PubMed |

Tapanainen, J. S., Aittomaki, K., Min, J., Vasivou, T., and Huhtaniemi, I. T. (1997). Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor present variable suppression of spermatogenesis and fertility. Nat. Genet. 15, 205–206.
Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor present variable suppression of spermatogenesis and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVOqtb8%3D&md5=74f3e3eca2a002fcb8928673176c7bc9CAS | 9020851PubMed |

Thomas, K. R., Folger, K. R., and Capecchi, M. R. (1986). High-frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428.
High-frequency targeting of genes to specific sites in the mammalian genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvVSqu70%3D&md5=1e7b54133dcb83c0a89b6ac3300e0c54CAS | 3002636PubMed |

Van Sande, J., Parma, J., Tonacchera, M., Swillens, S., Dumont, J., and Vassart, G. (1995). Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J. Clin. Endocrinol. Metab. 80, 2577–2585.
Somatic and germline mutations of the TSH receptor gene in thyroid diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFyitr0%3D&md5=331f4ce5cc92e9c60aa338d47dd5a334CAS | 7673398PubMed |

Vasseur, C., Rodien, P., Beau, I., Desroches, A., Gerard, C., de Poncheville, L., Chaplot, S., Savagner, F., Croue, A., Mathieu, E., Lahlou, N., Descamps, P., and Misrahi, M. (2003). A chorionic gonadotrophin-sensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome. N. Engl. J. Med. 349, 753–759.
A chorionic gonadotrophin-sensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOhtLo%3D&md5=1281f3f960904954971fecb8b7543103CAS | 12930927PubMed |

Walters, K. A., Allan, C. M., and Handelsman, D. J. (2008). Androgen actions and the ovary. Biol. Reprod. 78, 380–389.
Androgen actions and the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSltb8%3D&md5=db783a3f1138e817db3a553462cdb7a6CAS | 18003945PubMed |

Walters, K. A., McTavish, K. J., Seneviratne, M. G., Jimenez, M., McMahon, A. C., Allan, C. M., Salamonsen, L. A., and Handelsman, D. J. (2009). Sub-fertile female androgen receptor knockout mice exhibit defects in neuroendocrine signalling, intra-ovarian function and uterine development, but not uterine function. Endocrinology 150, 3274–3282.
Sub-fertile female androgen receptor knockout mice exhibit defects in neuroendocrine signalling, intra-ovarian function and uterine development, but not uterine function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlCrsLg%3D&md5=ae217908750d6f59d03def9865cf5bfeCAS | 19359383PubMed |

Walters, K. A., Simanainen, U., and Handelsman, D. J. (2010). Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum. Reprod. Update 16, 543–558.
Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVektr7N&md5=ae14723fceaf1d59b94c1ac914d7cfdaCAS | 20231167PubMed |

Welsh, M., Saunders, P. T., Atanassova, N., Sharpe, R. M., and Smith, L. B. (2009). Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J. 23, 4218–4230.
Androgen action via testicular peritubular myoid cells is essential for male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCgur%2FE&md5=a5cad50ff2211c75f1f79e43506bd5d2CAS | 19692648PubMed |

Wesolowska, N., and Rong, Y. S. (2010). The past, present and future of gene targeting in Drosophila. Fly (Austin) 4, 53–59.
The past, present and future of gene targeting in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVOnt7g%3D&md5=8bbc1ab1cf2586a4fc6d017762b6c70fCAS | 20139712PubMed |

Widmark, A., Bergh, A., Damber, J. E., and Smedegard, G. (1987). Leucocytes mediate the hCG-induced increase in testicular venular permeability. Mol. Cell. Endocrinol. 53, 25–31.
Leucocytes mediate the hCG-induced increase in testicular venular permeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsVOlsb4%3D&md5=1ac3dc962256a956e0eec9fb19e1b5adCAS | 3666291PubMed |

Wu, S., Wilson, M. D., Busby, E. R., Isaac, E. R., and Sherwood, N. M. (2010). Disruption of the single copy gonadotrophin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice. Endocrinology 151, 1142–1152.
Disruption of the single copy gonadotrophin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVKqtrw%3D&md5=6f896c7c40430bc72aea84f04c2fd295CAS | 20068010PubMed |

Yalow, R. S., and Berson, S. A. (1959). Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648–1649.
Assay of plasma insulin in human subjects by immunological methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXmvVOntw%3D%3D&md5=2851dc0e55e3981a2e109aa8faccad78CAS |

Yarram, S. J., Perry, M. J., Christopher, T. J., Westby, K., Brown, N. L., Lamminen, T., Rulli, S. B., Zhang, F. P., Huhtaniemi, I., Sandy, J. R., and Mansell, J. P. (2003). Luteinizing hormone receptor knockout (LuRKO) mice and transgenic human chorionic gonadotrophin (hCG)-overexpressing mice (hCG alphabeta+) have bone phenotypes. Endocrinology 144, 3555–3564.
Luteinizing hormone receptor knockout (LuRKO) mice and transgenic human chorionic gonadotrophin (hCG)-overexpressing mice (hCG alphabeta+) have bone phenotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjt7o%3D&md5=e4ebbba7efd0da381ccf7c5b1f03e202CAS | 12865338PubMed |

Zhang, F. P., Poutanen, M., Wilbertz, J., and Huhtaniemi, I. (2001). Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15, 172–183.
Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVKmuw%3D%3D&md5=be72bc774057eaedd7864b3c2beacbc7CAS | 11145748PubMed |

Zhang, F. P., Pakarainen, T., Poutanen, M., Toppari, J., and Huhtaniemi, I. (2003). The low gonadotrophin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc. Natl. Acad. Sci. USA 100, 13 692–13 697.
The low gonadotrophin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFOiur8%3D&md5=6d6db128b690d9da26299046e76c6691CAS |

Zhang, M., Tao, Y. X., Ryan, G. L., Feng, X., Fanelli, F., and Segaloff, D. L. (2007). Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations. J. Biol. Chem. 282, 25 527–25 539.
Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFWltrs%3D&md5=30ee11696d1f958e0a66f0beaa0c857dCAS |

Zirkin, B. R., Awoniyi, C., Griswold, M. D., Russell, L. D., and Sharpe, R. (1994). Is FSH required for adult spermatogenesis? J. Androl. 15, 273–276.
| 1:CAS:528:DyaK2cXlslSltb4%3D&md5=9b96371c51f2c784a9095d0945776552CAS | 7982794PubMed |