Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Seminal plasma enhances and accelerates progesterone-induced decidualisation of human endometrial stromal cells

U. Doyle A , N. Sampson A , C. Zenzmaier A , P. Schwärzler B and P. Berger A C
+ Author Affiliations
- Author Affiliations

A Institute of Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, 6020, Innsbruck, Austria.

B Obstetrics and Gynecology, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6807 Feldkirch, Austria.

C Corresponding author. Email: peter.berger@oeaw.ac.at

Reproduction, Fertility and Development 24(3) 517-522 https://doi.org/10.1071/RD10296
Submitted: 6 November 2010  Accepted: 29 May 2011   Published: 16 November 2011

Abstract

In preparation for embryo implantation, endometrial stromal cells (ESC) undergo differentiation, termed decidualisation. Enhancing endometrial decidualisation may overcome reduced endometrial receptivity, a major limiting factor in natural and assisted reproduction. To determine whether seminal plasma (SP) influences decidualisation, primary human ESC were treated with progesterone (P4, 50 ng mL–1) in the presence or absence of dialysed SP (0.5%) for 24 h or for up to 27 days to investigate immediate early effects or the effects of prolonged exposure, respectively. Combined SP and P4 treatment induced ESC morphological differentiation. Relative to control, P4 alone, and SP alone combined treatment with SP and P4 for 27 days significantly upregulated mRNA levels of the decidua-specific markers prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1). Consistently, PRL protein secretion was significantly increased over the course of 27 days combined SP and P4 treatment relative to control, P4 alone and SP alone. Likewise, IGFBP1 secretion was significantly greater relative to control and P4 alone over the course of 27 days. Thus, SP enhances and accelerates P4-mediated decidualisation of human ESC and may enhance endometrial receptivity.

Additional keywords: differentiation, endometrial receptivity, insulin-like growth factor binding protein 1, prolactin.


References

Aplin, J. D., Fazleabas, A. T., Glasser, S. R., and Giudice, L. C. (Eds) (2008). ‘The Endometrium: Molecular, Cellular and Clinical Perspectives (2nd edn).’ (Informa, UK: London)

Bartscha, O., and Ivell, R. (2004). Relaxin and phosphodiesterases collaborate during decidualization. Ann. N. Y. Acad. Sci. 1030, 479–492.
Relaxin and phosphodiesterases collaborate during decidualization.Crossref | GoogleScholarGoogle Scholar | 15659833PubMed |

Brar, A. K., Frank, G. R., Kessler, C. A., Cedars, M. I., and Handwerger, S. (1997). Progesterone-dependent decidualization of the human endometrium is mediated by camp. Endocrine 6, 301–307.
Progesterone-dependent decidualization of the human endometrium is mediated by camp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Shtr4%3D&md5=641c6c029a5459b4779b68e7f364f9d0CAS | 9368687PubMed |

Chang, H. J., Lee, J. H., Hwang, K. J., Kim, M. R., Chang, K. H., Park, D. W., and Min, C. K. (2008). Transforming growth factor (tgf)-beta1-induced human endometrial stromal cell decidualization through extracellular signal-regulated kinase and smad activation in vitro: Peroxisome proliferator-activated receptor gamma acts as a negative regulator of tgf-beta1. Fertil. Steril. 90, 1357–1365.
Transforming growth factor (tgf)-beta1-induced human endometrial stromal cell decidualization through extracellular signal-regulated kinase and smad activation in vitro: Peroxisome proliferator-activated receptor gamma acts as a negative regulator of tgf-beta1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrurfM&md5=c2ce54f0f21f1c90d00055c78e4f4dd7CAS | 18082740PubMed |

Coshen, A. (1989). Fetal control of maternal prolactin production and bioactivity in utero. Am. J. Obstet. Gynecol. 160, 322–327.

Coulam, C. B., and Stern, J. J. (1995). Effect of seminal plasma on implantation rates. Early Pregnancy 1, 33–36.
| 1:STN:280:DyaK1c%2FivFGktw%3D%3D&md5=286d1c815994b4272bbc1ba81ae00a21CAS | 9363233PubMed |

Frank, G. R., Brar, A. K., Cedars, M. I., and Handwerger, S. (1994). Prostaglandin E2 enhances human endometrial stromal cell differentiation. Endocrinology 134, 258–263.
Prostaglandin E2 enhances human endometrial stromal cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVWgtw%3D%3D&md5=2f03891958e989b2e9649202881049c1CAS | 7506205PubMed |

Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., and Schoolcraft, W. B. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158.
Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czhsF2hug%3D%3D&md5=487b339527eaab0a28fae2823d95699bCAS | 10856474PubMed |

Gellersen, B., and Brosens, J. (2003). Cyclic amp and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J. Endocrinol. 178, 357–372.
Cyclic amp and progesterone receptor cross-talk in human endometrium: a decidualizing affair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOhsbw%3D&md5=c9c84ad50d2986a105c41302de4c61aeCAS | 12967329PubMed |

Hernandez-Andrade, E., Villanueva-Diaz, C., and Ahued-Ahued, J. (2005). Growth hormone and prolactin in maternal plasma and amniotic fluid during normal gestation. Rev. Invest. Clin. 57, 671–675.
| 1:CAS:528:DC%2BD28XlvFCjtA%3D%3D&md5=ab792fe92ae99cfbaa295048419647b0CAS | 16419461PubMed |

Lane, B., Oxberry, W., Mazella, J., and Tseng, L. (1994). Decidualization of human endometrial stromal cells in vitro: effects of progestin and relaxin on the ultrastructure and production of decidual secretory proteins. Hum. Reprod. 9, 259–266.
| 1:CAS:528:DyaK2cXjtFKju78%3D&md5=c852e3a5db4b27eec9f9a2427f1f22b3CAS | 7517949PubMed |

Lessey, B. A., Castelbaum, A. J., Sawin, S. W., and Sun, J. (1995). Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil. Steril. 63, 535–542.
| 1:STN:280:DyaK2M7lsVGjsw%3D%3D&md5=c4505c272b5abad62589581f2a719415CAS | 7851583PubMed |

Lim, H., Paria, B. C., Das, S. K., Dinchuk, J. E., Langenbach, R., Trzaskos, J. M., and Dey, S. K. (1997). Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91, 197–208.
Multiple female reproductive failures in cyclooxygenase 2-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVyiu7o%3D&md5=fafe09ec5efed6c4a7469ca1279e10e5CAS | 9346237PubMed |

Livak, K., and Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS | 11846609PubMed |

Moy, E., Kimzey, L., Nelson, L., and Blithe, D. (1996). Glycoprotein hormone alpha-subunit functions synergistically with progesterone to stimulate differentiation of cultured human endometrial stromal cells to decidualized cells: a novel role for free alpha-subunit in reproduction. Endocrinology 137, 1332–1339.
Glycoprotein hormone alpha-subunit functions synergistically with progesterone to stimulate differentiation of cultured human endometrial stromal cells to decidualized cells: a novel role for free alpha-subunit in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVegt7w%3D&md5=7bbf64abe0ea12f940ee42932a8f853eCAS | 8625908PubMed |

Polson, D. W., Rogers, P. A., Krapez, J. A., and Leeton, J. F. (1992). Vaginal progesterone as luteal phase support in an ivf/gift programme. Eur. J. Obstet. Gynecol. Reprod. Biol. 46, 35–38.
Vaginal progesterone as luteal phase support in an ivf/gift programme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXps1M%3D&md5=976cd3bfb46ffe7df9b6aa1e5839a0bcCAS | 1426499PubMed |

Robertson, S. A. (2005). Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 322, 43–52.
Seminal plasma and male factor signalling in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 15909166PubMed |

Robertson, S. A. (2007). Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J. Anim. Sci. 85, E36–E44.
Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7itlWkug%3D%3D&md5=5ba942b43af96b69b53fe5bf19df9f0aCAS | 17085725PubMed |

Robertson, S. A., Allanson, M., and Mau, V. J. (1998). Molecular regulation of uterine leukocyte recruitment during early pregnancy in the mouse. Troph. Res. 11, 101–120.
| 1:CAS:528:DyaK1cXks1ajs70%3D&md5=ea8b23c355d1bceb8cd3b48e25c2f247CAS |

Robertson, S. A., Ingman, W. V., O’Leary, S., Sharkey, D. J., and Tremellen, K. P. (2002). Transforming growth factor beta – a mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 57, 109–128.
Transforming growth factor beta – a mediator of immune deviation in seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOmsr8%3D&md5=2671890788992492d42ad97c3d87c814CAS | 12385837PubMed |

Stewart, C. L., and Cullinan, E. B. (1997). Preimplantation development of the mammalian embryo and its regulation by growth factors. Dev. Genet. 21, 91–101.
Preimplantation development of the mammalian embryo and its regulation by growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Skur8%3D&md5=25639c5b4e351fc01d9cb96edc8e0184CAS | 9291585PubMed |

Strowitzki, T., Germeyer, A., Popovici, R., and von Wolff, M. (2006). The human endometrium as a fertility-determining factor. Hum. Reprod. Update 12, 617–630.
The human endometrium as a fertility-determining factor.Crossref | GoogleScholarGoogle Scholar | 16832043PubMed |

Tabanelli, S., Tang, B., and Gurpide, E. (1992). In vitro decidualization of human endometrial stromal cells. J. Steroid Biochem. Mol. Biol. 42, 337–344.
In vitro decidualization of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVSktbs%3D&md5=61c1be2b49b3f6ec8cf928ea5184f6e1CAS | 1534990PubMed |

Tremellen, K. P., Valbuena, D., Landeras, J., Ballesteros, A., Martinez, J., Mendoza, S., Norman, R. J., Robertson, S. A., and Simon, C. (2000). The effect of intercourse on pregnancy rates during assisted human reproduction. Hum. Reprod. 15, 2653–2658.
The effect of intercourse on pregnancy rates during assisted human reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWlsw%3D%3D&md5=e9166ca9e8162e619ec3598cc1b7f74aCAS | 11098040PubMed |

Untergasser, G., Rumpold, H., Plas, E., Witkowski, M., and Berger, P. (2001). Seminal plasma factors induce in vitro PRL secretion in smooth muscle cells of the human prostate. J. Clin. Endocrinol. Metab. 86, 5577–5584.
Seminal plasma factors induce in vitro PRL secretion in smooth muscle cells of the human prostate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kqtb0%3D&md5=725ca9e6112c8fae0e46414673f88cf5CAS | 11701738PubMed |

Vlaisavljevic, V., Kovacic, B., Reljic, M., Lovrec, V., and Sajko, M. (2001). Is there any benefit from the culture of a single oocyte to a blastocyst-stage embryo in unstimulated cycles? Hum. Reprod. 16, 2379–2383.
| 1:STN:280:DC%2BD3Mrnt1Sgsg%3D%3D&md5=403a39527fac9d7f89d7860e173044c1CAS | 11679524PubMed |

Wilcox, A. J., Baird, D. D., and Weinberg, C. R. (1999). Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799.
Time of implantation of the conceptus and loss of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ntVKisA%3D%3D&md5=4edcf041aa4173431f7dae8208820290CAS | 10362823PubMed |

World Health Organization (1999). ‘WHO Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction.’ 4th edn. (Cambridge University Press: Cambridge.)