Mitochondrial inhibition during preimplantation embryogenesis shifts the transcriptional profile of fetal mouse brain
Tod Fullston A C , Megan Mitchell A , Sarah Wakefield A and Michelle Lane A BA Discipline of Obstetrics & Gynaecology, School of Paediatrics & Reproductive Health, North Terrace Campus, The University of Adelaide, Adelaide, SA 5005, Australia.
B Repromed, 180 Fullarton Road, Dulwich, Adelaide, SA 5065, Australia.
C Corresponding author. Email: tod.fullston@adelaide.edu.au
Reproduction, Fertility and Development 23(5) 691-701 https://doi.org/10.1071/RD10292
Submitted: 3 November 2010 Accepted: 1 February 2011 Published: 17 May 2011
Abstract
Environmental stress results in perturbations to mitochondrial function in the preimplantation embryo and hinders subsequent embryo and possibly offspring development. Global gene expression in fetal mouse brain was investigated following targeted mitochondrial inhibition by amino-oxyacetate (AOA) from the 2-cell to the blastocyst stage. Blastocysts were transferred to pseudopregnant recipients and RNA extracted from Day 18 fetal brains for microarray interrogation. Exposure to 5 μM AOA during preimplantation embryo development induced differential expression of 166 genes (>1.25 fold) in the fetal brain, relative to control medium-cultured embryos. Altered expression pathways included carbohydrate metabolism, neurological development, cellular proliferation and death, DNA replication, recombination and repair. Of 28 genes exhibiting the greatest change in expression, qPCR confirmed that 16 were significantly altered. Targeted qPCR assessment of a further 20 genes associated with methylation, acetylation and mitochondrial dysfunction revealed that three were significantly altered (Immp1l, Nars2, Sat2) and Dmap1 exhibited a sex-specific response to AOA exposure. Only 2/48 genes had significantly altered expression by qPCR (Nola3, Timm8b) in fetal brains exposed to 50 μM AOA embryo culture, excluding an AOA dose-dependent response. It was concluded that perturbation of mitochondrial function induced by 5 μM AOA during preimplantation embryo development alters gene expression in the neonatal brain in a manner that suggests that proper brain development may be compromised.
Additional keywords: amino-oxyacetate, assisted reproductive technology, microarray, neurological development, programming, qPCR.
References
Arber, S., Ladle, D. R., Lin, J. H., Frank, E., and Jessell, T. M. (2000). ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498.| ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFWntL0%3D&md5=442d8c1001bc6a3991166fde5f6f0bdeCAS | 10850491PubMed |
Arnold, S. J., Huang, G. J., Cheung, A. F., Era, T., Nishikawa, S., Bikoff, E. K., Molnár, Z., Robertson, E. J., and Groszer, M. (2008). The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484.
| The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsbjP&md5=5885b65db6deab7f63ff3b92c7964a44CAS | 18794345PubMed |
Badenhop, R. F., Cherian, S., Lord, R. S. A., Baysal, B. E., Taschner, P. E. M., and Schofield, P. R. (2001). Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer 31, 255–263.
| Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslClsb4%3D&md5=bfbe2075837a3726ce01bb5868680d6bCAS | 11391796PubMed |
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300.
Biggers, J. D., Whittingham, D. G., and Donahue, R. P. (1967). The pattern of energy metabolism in the mouse oocyte and zygote. Proc. Natl. Acad. Sci. USA 58, 560–567.
| The pattern of energy metabolism in the mouse oocyte and zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXitVaitw%3D%3D&md5=5758de6a35a07750cf5982f60e00d6d7CAS |
Bonnefond, L., Fender, A., Rudinger-Thirion, J., Giegé, R., Florentz, C., and Sissler, M. (2005). Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry 44, 4805–4816.
| Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslait7w%3D&md5=9df385c32d2e725f84c8fe1b5b614f70CAS | 15779907PubMed |
Burri, L., Strahm, Y., Hawkins, C. J., Gentle, I. E., Puryer, M. A., Verhagen, A., Callus, B., Vaux, D., and Lithgow, T. (2005). Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Mol. Biol. Cell 16, 2926–2933.
| Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFGhurc%3D&md5=2cae0aaa89806ced52bceeb49b21c5efCAS | 15814844PubMed |
Chen, Y., Vujcic, S., Liang, P., Diegelman, P., Kramer, D. L., and Porter, C. W. (2003). Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase. Biochem. J. 373, 661–667.
| Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslOht7c%3D&md5=1b04f054325dafd0dd7862dd07d72462CAS | 12803540PubMed |
Cummins, J. M. (2004). The role of mitochondria in the establishment of oocyte functional competence. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S23–S29.
| The role of mitochondria in the establishment of oocyte functional competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVKlur8%3D&md5=46114748ec2ad8fdf4c3781e986b4896CAS | 15196712PubMed |
Curley, J. P., and Mashoodh, R. (2010). Parent-of-origin and trans-generational germline influences on behavioural development: the interacting roles of mothers, fathers and grandparents. Dev. Psychobiol. 52, 312–330.
| Parent-of-origin and trans-generational germline influences on behavioural development: the interacting roles of mothers, fathers and grandparents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1yrur0%3D&md5=3b5dcf7b868592c8599805dff289b89fCAS | 20373326PubMed |
Díaz, E. (2009). From microarrays to mechanisms of brain development and function. Biochem. Biophys. Res. Commun. 385, 129–131.
| From microarrays to mechanisms of brain development and function.Crossref | GoogleScholarGoogle Scholar | 19460360PubMed |
Ecker, D. J., Stein, P., Xu, Z., Williams, C. J., Kopf, G. S., Bilker, W. B., Abel, T., and Schultz, R. M. (2004). Long-term effects of culture of preimplantation mouse embryos on behaviour. Proc. Natl. Acad. Sci. USA 101, 1595–1600.
| Long-term effects of culture of preimplantation mouse embryos on behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFaqtrg%3D&md5=761d7643ac912b56a1bb0e8a4b57c4c0CAS |
El Shourbagy, S. H., Spikings, E. C., Freitas, M., and St John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
| Mitochondria directly influence fertilisation outcome in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=3d6f1cb076e2a0ee795438c7fa80de81CAS | 16452717PubMed |
Flames, N., and Hobert, O. (2009). Gene regulatory logic of dopamine neuron differentiation. Nature 458, 885–889.
| Gene regulatory logic of dopamine neuron differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFCisL8%3D&md5=6f1dace52c0893b057ca019527ad7157CAS | 19287374PubMed |
Gardner, D. K., and Lane, M. (2004). ‘A Laboratory Guide to the Mammalian Embryo.’ (Eds D. K. Gardner, M. Lane and A. J. Watson.) pp. 41–61. (Oxford University Press: New York.)
Hansen, M. J., Jovanovska, V., and Morris, M. J. (2004). Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. J. Neurochem. 88, 909–916.
| Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Kms7g%3D&md5=92705c3074cf999d9d65dfed27783812CAS | 14756812PubMed |
Hemberger, M., Udayashankar, R., Tesar, P., Moore, H., and Burton, G. J. (2010). ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet. 19, 2456–2467.
| ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Oksbo%3D&md5=d6b1386b24dcc0506203d6e49b2c66adCAS | 20354077PubMed |
Hewitson, L. C., Martin, K. L., and Leese, H. J. (1996). Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol. Reprod. Dev. 43, 323–330.
| Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVOnu7k%3D&md5=b9ffcc0d13d060b86b34cdf7da837f91CAS | 8868245PubMed |
Hiendleder, S., Wirtz, M., Mund, C., Klempt, M., Reichenbach, H. D., Stojkovic, M., Weppert, M., Wenigerkind, H., Elmlinger, M., Lyko, F., Schmitz, O. J., and Wolf, E. (2006). Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol. Reprod. 75, 17–23.
| Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlyisL0%3D&md5=546b2d4b1fa33aabdee1e7ad910bb802CAS | 16554415PubMed |
Hitchler, M. J., and Domann, F. E. (2009). Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic. Biol. Med. 47, 115–127.
| Metabolic defects provide a spark for the epigenetic switch in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFCqur8%3D&md5=20d7c1dda580fbcc199797ce8eaf9258CAS | 19362589PubMed |
Jin, H., Kendall, E., Freeman, T. C., Roberts, R. G., and Vetrie, D. L. (1999). The human family of Deafness/Dystonia peptide (DDP)-related mitochondrial import proteins. Genomics 61, 259–267.
| The human family of Deafness/Dystonia peptide (DDP)-related mitochondrial import proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFWqsL4%3D&md5=1cd7dd429d3d0f9c1981b69755fccb61CAS | 10552927PubMed |
Laflamme, C., Filion, C., and Labelle, Y. (2004). Functional characterization of SIX3 homeodomain mutations in holoprosencephaly: interaction with the nuclear receptor NR4A3/NOR1. Hum. Mutat. 24, 502–508.
| Functional characterization of SIX3 homeodomain mutations in holoprosencephaly: interaction with the nuclear receptor NR4A3/NOR1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1OntA%3D%3D&md5=d0956157be98400f5535dd4d43167232CAS | 15523651PubMed |
Lane, M., and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102, 305–312.
| Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFynsrs%3D&md5=8746559ed17a8a04a15406c5e683a334CAS | 7861382PubMed |
Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
| Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12guro%3D&md5=3b39fa8b325e9a208599d85e12083deeCAS | 9619560PubMed |
Lane, M., and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
| Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsr8%3D&md5=978bf448d8584ae5cc82691b22921fc8CAS | 12773416PubMed |
Lane, M., and Gardner, D. K. (2005). Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18 361–18 367.
| Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2ht7c%3D&md5=44038ddcd2f6beea93b09312b54a37c4CAS |
Lane, M., Mitchell, M., Cashman, K. S., Feil, D., Wakefield, S., and Zander-Fox, D. L. (2008). To QC or not to QC: the key to a consistent laboratory? Reprod. Fertil. Dev. 20, 23–32.
| To QC or not to QC: the key to a consistent laboratory?Crossref | GoogleScholarGoogle Scholar | 18154695PubMed |
Laurence, K. M., and Campbell, H. (1981). Trial of folate treatment to prevent recurrence of neural tube defect. Br. Med. J. (Clin. Res. Ed.) 282, 2131.
| Trial of folate treatment to prevent recurrence of neural tube defect.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3jtlOksw%3D%3D&md5=2b40772ca0228006889e442b5e77a650CAS | 6788230PubMed |
Leonard, W. R., Snodgrass, J. J., and Robertson, M. L. (2007). Effects of brain evolution on human nutrition and metabolism. Annu. Rev. Nutr. 27, 311–327.
| Effects of brain evolution on human nutrition and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWisLrJ&md5=bab1461c8f00b9bc9173d56379b6dcfaCAS | 17439362PubMed |
Mitchell, M., Cashman, K. S., Gardner, D. K., Thompson, J. G., and Lane, M. (2009a). Disruption of mitochondrial malate–spartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol. Reprod. 80, 295–301.
| Disruption of mitochondrial malate–spartate shuttle activity in mouse blastocysts impairs viability and fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitb4%3D&md5=ad7d0cfe016797747ba83f0449c77e3eCAS | 18971426PubMed |
Mitchell, M., Schulz, S. L., Armstrong, D. T., and Lane, M. (2009b). Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention. Biol. Reprod. 80, 622–630.
| Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVSktLo%3D&md5=f9ce1d88f3fce0a344c2ae09efeea42cCAS | 19129514PubMed |
Mitsuhashi, T., Aoki, Y., Eksioglu, Y. Z., Takahashi, T., Bhide, P. G., Reeves, S. A., and Caviness, V. S. (2001). Overexpression of p27(Kip1) lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc. Natl. Acad. Sci. USA 98, 6435–6440.
| Overexpression of p27(Kip1) lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVWkt7o%3D&md5=3a4526baa1849241c79484569dae8792CAS |
Mullican, S. E., Zhang, S., Konopleva, M., Ruvolo, V., Andreeff, M., Milbrandt, J., and Conneely, O. M. (2007). Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukaemia. Nat. Med. 13, 730–735.
| Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukaemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFeks7o%3D&md5=15b767038ec9472ddb82962250703130CAS | 17515897PubMed |
Negishi, M., Chiba, T., Saraya, A., Miyagi, S., and Iwama, A. (2009). Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process. Genes Cells 14, 1347–1357.
| Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSitrrL&md5=8321a08ca1a07ed2bc303869814bd9dfCAS | 19845771PubMed |
Ng, E. K., Tsui, N. B., Lau, T. K., Leung, T. N., Chiu, R. W., Panesar, N. S., Lit, L. C., Chan, K. W., and Lo, Y. M. (2003). mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl. Acad. Sci. USA 100, 4748–4753.
| mRNA of placental origin is readily detectable in maternal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12nsLg%3D&md5=4180283440bf064503a356f279d15a63CAS |
Ng, H. K., Novakovic, B., Hiendleder, S., Craig, J. M., Roberts, C. T.,, and Saffery, R. (2010). Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function. Placenta 31, 259–268.
| Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFGks7o%3D&md5=bcf75a8979542c01421beb159f81c4d0CAS | 20167366PubMed |
Nivoit, P., Morens, C., Van Assche, F. A., Jansen, E., Poston, L., Remacle, C., and Reusens, B. (2009). Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52, 1133–1142.
| Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Gqtbk%3D&md5=8ef21e14c815a2d8f91f456b0b4b72b1CAS | 19288075PubMed |
O’Dell, B. L., Whitley, J. R., and Hogan, A. G. (1948). Relation of folic acid and vitamin A to incidence of hydrocephalus in infant rats. Proc. Soc. Exp. Biol. Med. 69, 272–275.
| 1:CAS:528:DyaH1MXmslaq&md5=968c6dfe2ca39e2387e9245c573ee58bCAS | 18102201PubMed |
Ohkura, N., Hijikuro, M., and Miki, K. (1996). Antisense oligonucleotide to NOR-1, a novel orphan nuclear receptor, induces migration and neurite extension of cultured forebrain cells. Brain Res. Mol. Brain Res. 35, 309–313.
| Antisense oligonucleotide to NOR-1, a novel orphan nuclear receptor, induces migration and neurite extension of cultured forebrain cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslWmsw%3D%3D&md5=89cc612d155b01a90fbff7d8590a98b9CAS | 8717368PubMed |
Park, C. C., Petyuk, V. A., Qian, W. J., Smith, R. D., and Smith, D. J. (2009). Dual spatial maps of transcript and protein abundance in the mouse brain. Expert Rev. Proteomics 6, 243–249.
| Dual spatial maps of transcript and protein abundance in the mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12nu7c%3D&md5=82697b881d93b646aa3610e5ca7277a6CAS | 19489697PubMed |
Pei, L., Waki, H., Vaitheesvaran, B., Wilpitz, D. C., Kurland, I. J., and Tontonoz, P. (2006). NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12, 1048–1055.
| NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFClurw%3D&md5=9d7054a8e8da0461a10f51bd33c7f289CAS | 16906154PubMed |
Qasem, R. J., Cherala, G., and D’mello, A. P. (2010). Maternal protein restriction during pregnancy and lactation in rats imprints long-term reduction in hepatic lipid content selectively in the male offspring. Nutr. Res. 30, 410–417.
| Maternal protein restriction during pregnancy and lactation in rats imprints long-term reduction in hepatic lipid content selectively in the male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlGgsLs%3D&md5=ce63b862eb25b3167c830c2fe93056f8CAS | 20650349PubMed |
Rountree, M. R., Bachman, K. E., and Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269–277.
| DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKltLk%3D&md5=a0d0fd9bca088b310bc4042a38a55826CAS | 10888872PubMed |
Russ, A. P., Wattler, S., Colledge, W. H., Aparicio, S. A., Carlton, M. B., Pearce, J. J., Barton, S. C., Surani, M. A., Ryan, K., Nehls, M. C., Wilson, V., and Evans, M. J. (2000). Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99.
| Eomesodermin is required for mouse trophoblast development and mesoderm formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVyqt7o%3D&md5=acc8793f19c1c3616341359122a10a14CAS | 10716450PubMed |
Sinclair, K. D., and Singh, R. (2007). Modelling the developmental origins of health and disease in the early embryo. Theriogenology 67, 43–53.
| Modelling the developmental origins of health and disease in the early embryo.Crossref | GoogleScholarGoogle Scholar | 17049592PubMed |
Sommer, W. H., Lidström, J., Sun, H., Passer, D., Eskay, R., Parker, S. C. J., Witt, S. H., Zimmermann, U. S., Nieratschker, V., Rietschel, M., Margulies, E. H., Palkovits, M., Laucht, M., and Heilig, M. (2010). Human NPY promoter variation rs16147:T>C as a moderator of prefrontal NPY gene expression and negative affect. Hum. Mutat. Published Online: Jun 2010
Symonds, M. E., Stephenson, T., Gardner, D. S., and Budge, H. (2007). Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod. Fertil. Dev. 19, 53–63.
| Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows.Crossref | GoogleScholarGoogle Scholar | 17389135PubMed |
Tea, M., Fogarty, R., Brereton, H. M., Michael, M. Z., Van der Hoek, M. B., Tsykin, A., Coster, D. J., and Williams, K. A. (2009). Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J. Ocul. Biol. Dis. Inform. 2, 190–201.
| Gene expression microarray analysis of early oxygen-induced retinopathy in the rat.Crossref | GoogleScholarGoogle Scholar |
Terenghi, G., Polak, J. M., Hamid, Q., O’Brien, E., Denny, P., Legon, S., Dixon, J., Minth, C. D., Palay, S. L., and Yasargil, G. (1987). Localization of neuropeptide Y mRNA in neurons of human cerebral cortex by means of in situ hybridization with a complementary RNA probe. Proc. Natl. Acad. Sci. USA 84, 7315–7318.
| Localization of neuropeptide Y mRNA in neurons of human cerebral cortex by means of in situ hybridization with a complementary RNA probe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFamsb8%3D&md5=8e9403695fe42fa9f928fd1272c8b666CAS |
Thompson, J. G., Mitchell, M., and Kind, K. L. (2007). Embryo culture and long-term consequences. Reprod. Fertil. Dev. 19, 43–52.
| Embryo culture and long-term consequences.Crossref | GoogleScholarGoogle Scholar | 17389134PubMed |
Ueno, M., Kimura, N., Nakashima, K., Saito-Ohara, F., Inazawa, J., and Taga, T. (2000). Genomic organization, sequence and chromosomal localization of the mouse Tbr2 gene and a comparative study with Tbr1. Gene 254, 29–35.
| Genomic organization, sequence and chromosomal localization of the mouse Tbr2 gene and a comparative study with Tbr1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFGqsrs%3D&md5=2a847b1347b9ef06339156a0657b2655CAS | 10974533PubMed |
Van Blerkom, J., Davis, P., and Alexander, S. (2003). Inner mitochondrial membrane potential (ΔΨm), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum. Reprod. 18, 2429–2440.
| Inner mitochondrial membrane potential (ΔΨm), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVektL8%3D&md5=db4c19db03042e0459e8133b8c086155CAS | 14585897PubMed |
Wakefield, S. L., Lane, M., and Mitchell, M. (2010). Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod. 84, 572–580.
| Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse.Crossref | GoogleScholarGoogle Scholar | 21076083PubMed |
Wallace, D. C., and Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31.
| Energetics, epigenetics, mitochondrial genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ks73P&md5=4f690316295ea040f6f3f6723a4a3340CAS | 19796712PubMed |
Xiao, K., McClatchy, D. B., Shukla, A. K., Zhao, Y., Chen, M., Shenoy, S. K., Yates, J. R., and Lefkowitz, R. J. (2007). Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. USA 104, 12 011–12 016.
| Functional specialization of beta-arrestin interactions revealed by proteomic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVClsbc%3D&md5=befd4f4441e02c4251226f48889dab65CAS |
Zindy, F., Cunningham, J. J., Sherr, C. J., Jogal, S., Smeyne, R. J., and Roussel, M. F. (1999). Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 96, 13 462–13 467.
| Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Gmurw%3D&md5=46d563efb260aefa4b0e41cc4a7a3399CAS |