Prolonged storage of epididymal spermatozoa does not affect their capacity to fertilise in vitro-matured domestic cat (Felis catus) oocytes when using ICSI
J. Ringleb A B , R. Waurich A , G. Wibbelt A , W. J. Streich A and K. Jewgenow AA Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke.Str. 17; 10315 Berlin, Germany.
B Corresponding author. Email: ringleb@izw-berlin.de
Reproduction, Fertility and Development 23(6) 818-825 https://doi.org/10.1071/RD10192
Submitted: 5 August 2010 Accepted: 21 March 2011 Published: 13 July 2011
Abstract
The impact of different storage conditions of epididymal spermatozoa (including prolonged storage, cryopreservation and freeze-drying) on their fertilisation capacity was tested using intracytoplasmic sperm injection (ICSI). This kind of information is urgently needed when applying assisted reproductive technology to endangered felids in zoos. In particular, the utilisation of epididymal spermatozoa of castrated or deceased felids often requires time-consuming transportation and is therefore susceptible to loss of gamete quality. Sperm cells were stored at 4°C for up to 72 h followed by cryopreservation or freeze-drying. Thawed motile and immotile spermatozoa were used for ICSI and the embryo cleavage rate was assessed 36 h after injection. A significant impact on the fertilisation rate of oocytes could only be detected when using immotile thawed or rehydrated spermatozoa. Cryopreservation or storage at 4°C showed no influence. The simulation of transport conditions using domestic cat spermatozoa revealed that in vitro production of felid embryos with gametes from euthanised individuals is possible if testes are stored cool and arrive at the laboratory within 72 h. An essential prerequisite is the application of ICSI to achieve fertilisation even with single motile spermatozoa. Additional cryopreservation of spermatozoa after transportation is possible and will allow the establishment of a sperm bank for felids.
Additional keywords: Felidae, gamete banking.
References
Abdalla, H., Hirabayashi, M., and Hochi, S. (2009). The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology 71, 543–552.| The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChtLzF&md5=2564f85b04d2e1cfe48d5ca08390507dCAS | 18845331PubMed |
Axner, E., Hermansson, U., and Linde-Forsberg, C. (2004). The effect of Equex STM paste and sperm morphology on post-thaw survival of cat epididymal spermatozoa. Anim. Reprod. Sci. 84, 179–191.
| The effect of Equex STM paste and sperm morphology on post-thaw survival of cat epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGjs7o%3D&md5=1cb654a1a1240694c5f14517483d42daCAS | 15302397PubMed |
Baker, H. W. (2000). Management of male infertility. Best Pract. Res. Clin. Endocrinol. Metab. 14, 409–422.
| Management of male infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvmslWqtQ%3D%3D&md5=edd2cf3853197eb6ef2b2758fe69a875CAS |
Bogliolo, L., Leoni, G., Ledda, S., Naitana, S., Zedda, M., Carluccio, A., and Pau, S. (2001). Intracytoplasmic sperm injection of in vitro-matured oocytes of domestic cats with frozen–thawed epididymal spermatozoa. Theriogenology 56, 955–967.
| Intracytoplasmic sperm injection of in vitro-matured oocytes of domestic cats with frozen–thawed epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrmsVCrsA%3D%3D&md5=c71a11be277689860e50043d118dc37fCAS | 11665895PubMed |
Comizzoli, P., Wildt, D. E., and Pukazhenthi, B. S. (2006). In vitro development of domestic cat embryos following intra-cytoplasmic sperm injection with testicular spermatozoa. Theriogenology 66, 1659–1663.
| In vitro development of domestic cat embryos following intra-cytoplasmic sperm injection with testicular spermatozoa.Crossref | GoogleScholarGoogle Scholar | 16473401PubMed |
Devroey, P., and Van Steirteghem, A. (2004). A review of ten years’ experience of ICSI. Hum. Reprod. Update 10, 19–28.
| A review of ten years’ experience of ICSI.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7hsFGitQ%3D%3D&md5=755b61fc1527cee9cd588063ff8cba09CAS | 15005461PubMed |
Ehmcke, J., and Schlatt, S. (2008). Animal models for fertility preservation in the male. Reproduction 136, 717–723.
| Animal models for fertility preservation in the male.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CktQ%3D%3D&md5=bd235b2253a9a3dbbdca669e4c005279CAS | 18515311PubMed |
Fernandez-Santos, M. R., Martinez-Pastor, F., Matias, D., Dominguez-Rebolledo, A. E., Esteso, M. C., Montoro, V., and Garde, J. J. (2009). Effects of long-term chilled storage of red deer epididymides on DNA integrity and motility of thawed spermatozoa. Anim. Reprod. Sci. 111, 93–104.
| Effects of long-term chilled storage of red deer epididymides on DNA integrity and motility of thawed spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCgs7zI&md5=a069906b8c1bed188cc6cdf02b60a2e6CAS | 18328648PubMed |
Gañán, N., Gomendio, M., and Roldan, E. R. (2009). Effect of storage of domestic cat (Felis catus) epididymides at 5 degrees C on sperm quality and cryopreservation. Theriogenology 72, 1268–1277.
| Effect of storage of domestic cat (Felis catus) epididymides at 5 degrees C on sperm quality and cryopreservation.Crossref | GoogleScholarGoogle Scholar | 19775740PubMed |
Gold, R. Z. (1962). ‘On Comparing Multinomial Probabilities.’ pp. 62–81. (School of Aerospace Medicine, USAF Aerospace Medical Division (AFSC): Brooks Air Force Base, Texas, USA.)
Hansen, M., Kurinczuk, J. J., Bower, C., and Webb, S. (2002). The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N. Engl. J. Med. 346, 725–730.
| The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 11882727PubMed |
Hewitson, L. (2004). Primate models for assisted reproductive technologies. Reproduction 128, 293–299.
| Primate models for assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitLs%3D&md5=9d5c8b4e37be61f3f77b4b4f44a8fcfdCAS | 15333780PubMed |
Howard, J. G., and Wildt, D. E. (2009). Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 71, 130–148.
| Approaches and efficacy of artificial insemination in felids and mustelids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjnt1Crug%3D%3D&md5=97a8f7e70fab39948eaaaae261e68ec7CAS | 18996580PubMed |
Kaneko, T., Kimura, S., and Nakagata, N. (2007). Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection. Theriogenology 68, 1017–1021.
| Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srmslKlsg%3D%3D&md5=4793f5d5026d808ee984f3c4d273cc8cCAS | 17804050PubMed |
Kawase, Y., Wada, N. A., and Jishage, K. (2009). Evaluation of DNA fragmentation of freeze-dried mouse sperm using a modified sperm chromatin structure assay. Theriogenology 72, 1047–1053.
| Evaluation of DNA fragmentation of freeze-dried mouse sperm using a modified sperm chromatin structure assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wmt7%2FF&md5=94c1737537ecd8cd4383e15f97d8204eCAS | 19729192PubMed |
Kim, E. D., Bischoff, F. Z., Lipshultz, L. I., and Lamb, D. J. (1998). Genetic concerns for the subfertile male in the era of ICSI. Prenat. Diagn. 18, 1349–1365.
| Genetic concerns for the subfertile male in the era of ICSI.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7jsVGqtg%3D%3D&md5=cd729eb205b9d508524f3c2b9df2a1cbCAS | 9949435PubMed |
Kishikawa, H., Tateno, H., and Yanagimachi, R. (1999). Fertility of mouse spermatozoa retrieved from cadavers and maintained at 4 degrees C. J. Reprod. Fertil. 116, 217–222.
| Fertility of mouse spermatozoa retrieved from cadavers and maintained at 4 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltL8%3D&md5=c1a5f783c3737dbf266b2bed27394539CAS | 10615245PubMed |
Kuretake, S., Kimura, Y., Hoshi, K., and Yanagimachi, R. (1996). Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol. Reprod. 55, 789–795.
| Fertilization and development of mouse oocytes injected with isolated sperm heads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Gkt7c%3D&md5=5b718d748f27de05a0a162fdc2fe1947CAS | 8879491PubMed |
Kwon, I. K., Park, K. E., and Niwa, K. (2004). Activation, pronuclear formation and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol. Reprod. 71, 1430–1436.
| Activation, pronuclear formation and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yis7o%3D&md5=18a117378418955be59315f7bd027a01CAS | 15215192PubMed |
Lengwinat, T., and Blottner, S. (1994). In vitro fertilization of follicular oocytes of domestic cat using fresh and cryopreserved epididymal spermatozoa. Anim. Reprod. Sci. 35, 291–301.
| In vitro fertilization of follicular oocytes of domestic cat using fresh and cryopreserved epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Li, M. W., Willis, B. J., Griffey, S. M., Spearow, J. L., and Lloyd, K. C. (2009). Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote 17, 239–251.
| Assessment of three generations of mice derived by ICSI using freeze-dried sperm.Crossref | GoogleScholarGoogle Scholar | 19416557PubMed |
Liu, J. L., Kusakabe, H., Chang, C. C., Suzuki, H., Schmidt, D. W., Julian, M., Pfeffer, R., Bormann, C. L., Tian, X. C., Yanagimachi, R., and Yang, X. (2004). Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod. 70, 1776–1781.
| Freeze-dried sperm fertilization leads to full-term development in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOmt7Y%3D&md5=a8279d4c5736b94cabdebbaf7db6ebd1CAS | 14960482PubMed |
MacCallum, C., and Johnston, S. D. (2005). Studies on the cryopreservation of common wombat (Vombatus ursinus) spermatozoa. Reprod. Fertil. Dev. 17, 727–732.
| Studies on the cryopreservation of common wombat (Vombatus ursinus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKkt77P&md5=36099d7ea11e958a4e30f9d8ec8d4970CAS | 16364227PubMed |
Martins, C. F., Dode, M. N., Bao, S. N., and Rumpf, R. (2007). The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA. Genet. Mol. Res. 6, 94–104.
| 1:CAS:528:DC%2BD2sXjsl2rtbc%3D&md5=071015980283fe54ca415712a3c021ecCAS | 17469058PubMed |
Moisan, A., Leibo, S., Lynn, J., Gómez, M., Pope, C., Bondioli, K., Dresser, B., and Godke, R. (2006). Blastocyst development from domestic cat oocytes injected with dehydrated spermatozoa. Reprod. Fertil. Dev. 18, 285..
| Blastocyst development from domestic cat oocytes injected with dehydrated spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Nakai, M., Kashiwazaki, N., Takizawa, A., Maedomari, N., Ozawa, M., Noguchi, J., Kaneko, H., Shino, M., and Kikuchi, K. (2007). Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability in vitro and in vivo after intracytoplasmic sperm head injection. Zygote 15, 15–24.
| Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability in vitro and in vivo after intracytoplasmic sperm head injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGis70%3D&md5=8af2fa5452682c57e68e18027053a15dCAS | 17391542PubMed |
Palermo, G., Joris, H., Devroey, P., and Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18.
| Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zgtFWrsA%3D%3D&md5=d52e3e91d530291a8b9889d39f686b67CAS | 1351601PubMed |
Pelican, K. M., Wildt, D. E., Pukazhenthi, B., and Howard, J. (2006). Ovarian control for assisted reproduction in the domestic cat and wild felids. Theriogenology 66, 37–48.
| Ovarian control for assisted reproduction in the domestic cat and wild felids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFKrsL0%3D&md5=47f519b43d99a7a5840ecdef7e9d55e4CAS | 16630653PubMed |
Petrunkina, A. M., Volker, G., Weitze, K.-F., Beyerbach, M., Töpfer-Petersen, E., and Waberski, D. (2005). Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions. Theriogenology 63, 2278–2299.
| Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrtbk%3D&md5=483d53479f6583979069f2ff72db17eeCAS | 15826690PubMed |
Pope, C. E., Turner, J. L., Quatman, S. P., and Dresser, B. L. (1991). Semen storage in the domestic felid: a comparison of cryopreservation methods and storage temperature. 24th Annual Meeting of the University of British Columbia Vancouver, Society for the Study of Reproduction. Biol. Reprod. 44, 117. .
Pope, C. E., Johnson, C. A., McRae, M. A., Keller, G. L., and Dresser, B. L. (1998). Development of embryos produced by intracytoplasmic sperm injection of cat oocytes. Anim. Reprod. Sci. 53, 221–236.
| Development of embryos produced by intracytoplasmic sperm injection of cat oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FltFSnsA%3D%3D&md5=8916ae50a0ff0e273e0efb0eee47baafCAS | 9835378PubMed |
Pukazhenthi, B. S., and Wildt, D. E. (2004). Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reprod. Fertil. Dev. 16, 33–46.
| Which reproductive technologies are most relevant to studying, managing and conserving wildlife?Crossref | GoogleScholarGoogle Scholar | 14972101PubMed |
Rasch, D., Enderlein, G., and Herrendörfer, G. (1973). ‘Biometrie – Verfahren, Tabellen, Angewandte Statistik.’ Kap. 2.2.4, pp. 55–59. (Deutscher Landwirtschaftsverlag: Berlin, Germany.)
Ringleb, J., Rohleder, M., and Jewgenow, K. (2004). Impact of feline zona pellucida glycoprotein B-derived synthetic peptides on in vitro fertilization of cat oocytes. Reproduction 127, 179–186.
| Impact of feline zona pellucida glycoprotein B-derived synthetic peptides on in vitro fertilization of cat oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrt7o%3D&md5=0ac9a82873b86427614be36173eb7b56CAS | 15056783PubMed |
Rota, A., Strom, B., and Linde-Forsberg, C. (1995). Effects of seminal plasma and three extenders on canine semen stored at 4 degrees C. Theriogenology 44, 885–900.
| Effects of seminal plasma and three extenders on canine semen stored at 4 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVGnsw%3D%3D&md5=ac2fe44a090155c0a78a69dec5341dd8CAS | 16727784PubMed |
Sanchez-Partida, L. G., Simerly, C. R., and Ramalho-Santos, J. (2008). Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection. Fertil. Steril. 89, 742–745.
| Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 17562332PubMed |
Sherins, R. J., Thorsell, L. P., Dorfmann, A., Dennison-Lagos, L., Calvo, L. P., Krysa, L., Coulam, C. B., and Schulman, J. D. (1995). Intracytoplasmic sperm injection facilitates fertilization even in the most severe forms of male infertility: pregnancy outcome correlates with maternal age and number of eggs available. Fertil. Steril. 64, 369–375.
| 1:STN:280:DyaK2MzktVSisQ%3D%3D&md5=4300d7bec480a49104df31fdb95ff8c0CAS | 7615116PubMed |
Swanson, W. F. (2006). Application of assisted reproduction for population management in felids: the potential and reality for conservation of small cats. Theriogenology 66, 49–58.
| Application of assisted reproduction for population management in felids: the potential and reality for conservation of small cats.Crossref | GoogleScholarGoogle Scholar | 16650889PubMed |
Waberski, D., Weitze, K. F., Lietmann, C., Lübbert zur Lage, W., Bortolozzo, F. W., Willmen, T., and Petzoldt, R. (1994). The initial fertilizing capacity of long-term-stored liquid boar semen following pre- and post-ovulatory insemination. Theriogenology 41, 1367–1377.
| The initial fertilizing capacity of long-term-stored liquid boar semen following pre- and post-ovulatory insemination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVanuw%3D%3D&md5=43f4c4a671b463a4084c44a6aa23e8f3CAS | 16727491PubMed |
Wakayama, T., and Yanagimachi, R. (1998). Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641.
| Development of normal mice from oocytes injected with freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Gns7k%3D&md5=4e96723cf94e41af22af26f5dce4b7e7CAS | 9661196PubMed |
Waurich, R., Ringleb, J., Braun, B. C., and Jewgenow, K. (2010). Embryonic gene activation in in vitro-produced embryos of the domestic cat (Felis catus). Reproduction 140, 531–540.
| Embryonic gene activation in in vitro-produced embryos of the domestic cat (Felis catus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCqurrP&md5=777bf9e3717cf7feb32b12b76abc45d6CAS | 20660570PubMed |
Yanagimachi, R. (1998). Intracytoplasmic sperm injection experiments using the mouse as a model. Hum. Reprod. 13, 87–98.
| 9663773PubMed |