Regulation of aromatase expression by 1α,25(OH)2 vitamin D3 in rat testicular cells
Leila Zanatta A B , Hélène Bouraïma-Lelong A , Christelle Delalande A , Fátima R. M. B. Silva B and Serge Carreau A CA Laboratoire Oestrogènes et Reproduction, Université de Caen Basse-Normandie, EA 2608, INRA, USC 2006, IFR ICORE, 14032 Caen, France.
B Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-970, Florianópolis – Santa Catarina, Brazil.
C Corresponding author. Email: serge.carreau@unicaen.fr
Reproduction, Fertility and Development 23(5) 725-735 https://doi.org/10.1071/RD10163
Submitted: 30 June 2010 Accepted: 27 January 2011 Published: 23 May 2011
Abstract
It is well known that the vitamin D endocrine system is involved in physiological and biochemical events in numerous tissues, especially gut, bone and kidney but also testis. Therefore, in this study the effect and mechanisms of action of 1α,25(OH)2 vitamin D3 (1,25D) on aromatase gene expression in immature rat Sertoli cells were evaluated. Vitamin D receptor transcripts were present in immature Sertoli cells as well as in adult testicular germ cells and somatic cells. The treatment of immature Sertoli cells with 100 nM 1,25D increased the amount of aromatase transcript, mainly in 30-day-old rats. The protein kinase A (PKA) blocker, H89, partially inhibited the 1,25D effect. The stimulation of aromatase gene expression in 30-day-old Sertoli cells by the agonist 1α,25(OH)2 lumisterol3, and the suppression of the 1,25D effect by the antagonists 1β,25(OH)2 vitamin D3 and (23S)-25-dehydro-1α (OH)-vitamin D3-26,23-lactone suggested, besides a genomic effect of 1,25D, the existence of non-genomic activation of the membrane-bound vitamin D receptor involving the PKA pathway.
Additional keywords: immature Sertoli cells, vitamin D3 analogues, vitamin D receptor (VDR).
References
Akerstrom, V. L., and Walters, M. R. (1992). Physiological effects of 1, 25-dihydroxyvitamin D3 in TM4 Sertoli cell line. Am. J. Physiol. Endocrinol. Metab. 262, E884–E890.| 1:CAS:528:DyaK38XltVGitr8%3D&md5=161552f0fd90b18c874d767ffa1661c3CAS |
Avila, E., Diaz, L., Barrera, D., Halhali, A., Mendez, I., Gonzales, L., Zuegel, U., Steinmeyer, A., and Larrera, F. (2007). Regulation of vitamin D hydroxylases gene expression by 1α,25(OH)2 vitamin D3 and cyclic AMP in cultured syncytiotrophoblasts. J. Steroid Biochem. Mol. Biol. 103, 90–96.
| Regulation of vitamin D hydroxylases gene expression by 1α,25(OH)2 vitamin D3 and cyclic AMP in cultured syncytiotrophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OhtLzF&md5=54beb0778d4e417ed401a773e5320e10CAS | 17079137PubMed |
Barrera, D., Avila, E., Hernandez, G., Halhali, A., Biruete, B., Larrea, F., and Diaz, L. (2007). Oestradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J. Steroid Biochem. Mol. Biol. 103, 529–532.
| Oestradiol and progesterone synthesis in human placenta is stimulated by calcitriol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Wns7Y%3D&md5=99f365d2409d9bcff082c7eddab0e7e9CAS | 17257826PubMed |
Bellvé, A. R., Millette, C. F., Bhatnagar, Y. M., and O’Brien, D. (1977). Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J. Histochem. Cytochem. 25, 480–494.
| 893996PubMed |
Bouillon, R., Okamura, W. H., and Norman, A. W. (1995). Structure–function relationships in the vitamin D endocrine system. Endocr. Rev. 16, 200–257.
| 1:CAS:528:DyaK2MXmtFWisrg%3D&md5=2020d58894ba6a07ec51c326cb4e667aCAS | 7781594PubMed |
Bouraïma-Lelong, H., Vanneste, M., Delalande, C., Zanatta, L., Wolczynski, S., and Carreau, S. (2010). Aromatase gene expression in immature rat Sertoli cells: age-related changes in the FSH signalling pathway. Reprod. Fertil. Dev. 22, 508–515.
| Aromatase gene expression in immature rat Sertoli cells: age-related changes in the FSH signalling pathway.Crossref | GoogleScholarGoogle Scholar | 20188023PubMed |
Bourguiba, S., Lambard, S., and Carreau, S. (2003a). Steroids control the aromatase gene expression in purified germ cells from the adult male rat. J. Mol. Endocrinol. 31, 83–94.
| Steroids control the aromatase gene expression in purified germ cells from the adult male rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFejtb8%3D&md5=81e2905197c0cdb831e0495c03e75b33CAS | 12914527PubMed |
Bourguiba, S., Chater, S., Delalande, C., Benahmed, M., and Carreau, S. (2003b). Regulation of aromatase gene expression in purified germ cells of adult male rats: effects of transforming growth factor beta, tumour necrosis factor alpha and cyclic adenosine 3′,5′-monosphosphate. Biol. Reprod. 69, 592–601.
| Regulation of aromatase gene expression in purified germ cells of adult male rats: effects of transforming growth factor beta, tumour necrosis factor alpha and cyclic adenosine 3′,5′-monosphosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVerurk%3D&md5=fb807a8a94be5bdd421eb3478391ce17CAS | 12700195PubMed |
Bula, C. M., Bishop, J. E., Ishizuka, S., and Norman, A. W. (2000). 25-dehydro-1a-hydroxyvitamin D3–26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique non-covalent conformational change. Mol. Endocrinol. 14, 1788–1796.
| 25-dehydro-1a-hydroxyvitamin D3–26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique non-covalent conformational change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVOrs7s%3D&md5=7b38be8257d137cafd6d014315a9b8d5CAS | 11075812PubMed |
Carlberg, C. (2003). Molecular basis of the selective activity of vitamin D analogues. J. Cell. Biochem. 88, 274–281.
| Molecular basis of the selective activity of vitamin D analogues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyluw%3D%3D&md5=95054f993e6aa87f2b35d23462c5e6a6CAS | 12520526PubMed |
Carpino, A., Pezzi, V., Rago, V., Bilinska, B., and Andò, S. (2001). Immunolocalization of cytochrome P450 aromatase in rat testis during postnatal development. Tissue Cell 33, 349–353.
| Immunolocalization of cytochrome P450 aromatase in rat testis during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvnvVGluw%3D%3D&md5=e8482841d5b6ac415e5c9805d5a2e83eCAS | 11521950PubMed |
Carreau, S., Delalande, C., Silandre, D., Bourguiba, S., and Lambard, S. (2006). Aromatase and oestrogen receptors in male reproduction. Mol. Cell. Endocrinol. 246, 65–68.
| Aromatase and oestrogen receptors in male reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2gtLY%3D&md5=af36e0babfb60ead15850829596bd725CAS | 16406261PubMed |
Carreau, S., Bourguiba, S., Delalande, C., Silandre, D., Saïd, L., Galeraud-Denis, I., and Lambard, S. (2008). Oestrogen: roles in spermatogenesis. Curr. Med. Chem. Immunol. Endocr. Metab. Agents 8, 59–65.
| Oestrogen: roles in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSntb4%3D&md5=395b010df0be2db83c6c45c2b1b72d9cCAS |
Carreau, S., Delalande, C., and Galeraud-Denis, I. (2009). Mammalian sperm quality and aromatase expression. Microsc. Res. Tech. 72, 552–557.
| Mammalian sperm quality and aromatase expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnurvM&md5=fd934ccffe3a67f08cb792f03fe43fc3CAS | 19263495PubMed |
Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.
| Specificity and mechanism of action of some commonly used protein kinase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslWltrY%3D&md5=7b6ebc7dde6ad415b6dca9be5b6c572fCAS | 10998351PubMed |
De Boland, A. R., and Nemere, I. (1992). Rapid actions of vitamin D compounds. J. Cell. Biochem. 49, 32–36.
| Rapid actions of vitamin D compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVylsL4%3D&md5=4f912ab13f68eba4365d514da3741d84CAS | 1644851PubMed |
Dorrington, J. H., Roller, N. F., and Fritz, I. B. (1975). Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol. Cell. Endocrinol. 3, 57–70.
| Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVWhtrc%3D&md5=ae34981c27822496dfe86d0f46da54daCAS | 168104PubMed |
Fitzpatrick, S. L., and Richards, J. S. (1993). Cis-acting elements of the aromatase promoter required for cyclic adenosine 3′,5′-monophosphate induction in ovarian granulose cells and constitutive expression in R2C Leydig cells. Mol. Endocrinol. 7, 341–354.
| Cis-acting elements of the aromatase promoter required for cyclic adenosine 3′,5′-monophosphate induction in ovarian granulose cells and constitutive expression in R2C Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1eqtLY%3D&md5=58e80f49b5d10489ceb4266a9c285004CAS | 8387157PubMed |
Fleet, J. C. (2004). Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J. Nutr. 134, 3215–3218.
| 1:CAS:528:DC%2BD2cXhtVyitbjP&md5=50e757a598b568d98b867b9e2d8d9b68CAS | 15570014PubMed |
Galdieri, M., Ziparo, E., Palombi, F., Russo, M., and Stefanini, M. (1981). Pure Sertoli cell cultures: a new model for the study of somatic–germ cell interactions. J. Androl. 5, 249–254.
Gocek, E., Kielbinski, M., and Marcinkowska, E. (2007). Activation of intracellular signalling pathways is necessary for an increase in VDR expression and its nuclear translocation. FEBS Lett. 581, 1751–1757.
| Activation of intracellular signalling pathways is necessary for an increase in VDR expression and its nuclear translocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksV2rsbY%3D&md5=570a519c01daed31fb42b5e13b24fefaCAS | 17418144PubMed |
Halloran, B. P., and Deluca, H. F. (1980). Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J. Nutr. 110, 1573–1580.
| 1:CAS:528:DyaL3cXltlWjtbo%3D&md5=08ce5123bd0dc7c23d3ba7a207e351edCAS | 7400847PubMed |
Hirai, T., Tsujimura, T., Ueda, T., Fujita, K., Matsuoka, Y., Takao, T., Miyagawa, Y., Koike, N., and Okuyama, A. (2009). Effect of 1,25-dihydroxyvitamin D on testicular morphology and gene expression in experimental cryptorchid mouse: testis-specific cDNA microarray analysis and potential implication in male infertility. J. Urol. 181, 1487–1492.
| Effect of 1,25-dihydroxyvitamin D on testicular morphology and gene expression in experimental cryptorchid mouse: testis-specific cDNA microarray analysis and potential implication in male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCgsLY%3D&md5=d48b313a54433804e3c810365ba34c9cCAS | 19157449PubMed |
Ishizuka, S., Miura, D., Ozono, K., Saito, M., Eguchi, H., Chokki, M., and Norman, A. W. (2001). (23S)-and (23R)-25-dehydro-1α-hydroxyvitamin D3-26,23-lactone functions as antagonists of vitamin D receptor-mediated genomic actions of 1α,25-dihydroxyvitamin D3. Steroids 66, 227–237.
| (23S)-and (23R)-25-dehydro-1α-hydroxyvitamin D3-26,23-lactone functions as antagonists of vitamin D receptor-mediated genomic actions of 1α,25-dihydroxyvitamin D3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFehsbc%3D&md5=47480a209f35a57a2118aa643fda49c6CAS | 11179730PubMed |
Johnson, J. A., Grande, J. P., Roche, P. C., and Kumar, R. (1996). Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem. Cell Biol. 105, 7–15.
| Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVagsA%3D%3D&md5=4eede4ce8464de48e2e682b4f6e0f660CAS | 8824901PubMed |
Kajikawa, M., Ishida, H., Fujimoto, S., Mukai, E., Nishimura, M., Fujita, J., Tsuura, Y., Okamoto, Y., Norman, A. W., and Seino, Y. (1999). An insulinotropic effect of vitamin D analogue with increasing intracellular Ca2+ concentration in pancreatic β-cells through non-genomic signal transduction. Endocrinology 140, 4706–4712.
| An insulinotropic effect of vitamin D analogue with increasing intracellular Ca2+ concentration in pancreatic β-cells through non-genomic signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFGqsLw%3D&md5=b28bed32392b800dde8f7e762f536312CAS | 10499529PubMed |
Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S., and Seino, Y. (2000). Vitamin D is an important factor in oestrogen biosynthesis of both female and male gonads. Endocrinology 141, 1317–1324.
| Vitamin D is an important factor in oestrogen biosynthesis of both female and male gonads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOktLo%3D&md5=0d8f39a8c1b7c57b04e37cc7d56a2ba5CAS | 10746634PubMed |
Kwiecinski, G. G., Petrie, G. I., and DeLuca, H. F. (1989). Vitamin D is necessary for reproductive functions of the male rat. J. Nutr. 119, 741–744.
| 1:CAS:528:DyaL1MXksFKhtr8%3D&md5=fd2a66d181da2dbfac33d0002ca965beCAS | 2723823PubMed |
Lanzino, M., Catalano, S., Genissel, C., Ando, S., Carreau, S., Hamra, K., and McPhaul, M. J. (2001). Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig, Sertoli and germ cells of the rat testis. Biol. Reprod. 64, 1439–1443.
| Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig, Sertoli and germ cells of the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKqs74%3D&md5=e98fab854f5336a2ddb374445f953216CAS | 11319149PubMed |
Le Magueresse, B., and Jégou, B. (1986). Possible involvement of germ cells in the regulation of oestradiol-17 beta and ABP secretion by immature rat Sertoli cells (in vitro studies). Biochem. Biophys. Res. Commun. 141, 861–869.
| Possible involvement of germ cells in the regulation of oestradiol-17 beta and ABP secretion by immature rat Sertoli cells (in vitro studies).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslygtQ%3D%3D&md5=d86dbc16e2e7eb96d43d1896598fb56aCAS | 3026395PubMed |
Levallet, J., Bilinska, B., Mittre, H., Genissel, C., Fresnel, J., and Carreau, S. (1998). Expression and immunolocalization of functional cytochrome P450 aromatase in mature rat testicular cells. Biol. Reprod. 58, 919–926.
| Expression and immunolocalization of functional cytochrome P450 aromatase in mature rat testicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Khsbc%3D&md5=fac0c803b732042a746e13a81b03ecf0CAS | 9546721PubMed |
Lynch, J. P., Lala, D. S., Peluso, J. J., Luo, W., Parker, K. L., and White, B. A. (1993). Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues. Mol. Endocrinol. 7, 776–786.
| Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpvVSgsg%3D%3D&md5=30bcd70bc582fe86b53207392ac6caf7CAS | 8395654PubMed |
Menegaz, D., Rosso, A., Royer, C., Leite, L. D., Santos, A. R. S., and Silva, F. R. M. B. (2009). Role of 1α,25(OH)2 vitamin D3 on [1-14C]-MeAIB accumulation in immature rat testis. Steroids 74, 264–269.
| Role of 1α,25(OH)2 vitamin D3 on [1-14C]-MeAIB accumulation in immature rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFent7k%3D&md5=1bd92751ee3410f44041e0a24d48b58cCAS | 19073199PubMed |
Menegaz, D., Barrientos-Duran, A., Kline, A., Silva, F. R., Norman, A. W., Mizwicki, M. T., and Zanello, L. P. (2010). 1alpha,25(OH)2-Vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells. J. Steroid Biochem. Mol. Biol. 119, 127–134.
| 1alpha,25(OH)2-Vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgu78%3D&md5=5b110f94f11fe7bcdf915ff9da8b86b6CAS | 20156558PubMed |
Mizwicki, M. T., and Norman, A. W. (2009). The vitamin D sterol–vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signalling. Sci. Signal. 2, re4.
| The vitamin D sterol–vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signalling.Crossref | GoogleScholarGoogle Scholar | 19531804PubMed |
Norman, A. W. (2006). Minireview: vitamin D Receptor: new assignments for an already busy receptor. Endocrinology 147, 5542–5548.
| Minireview: vitamin D Receptor: new assignments for an already busy receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqsbfK&md5=2b9e46c6cb8a87ad25002252621120cdCAS | 16946007PubMed |
Norman, A. W., Okamura, W. H., Hammond, M. W., Bishop, J. E., Dormanen, M. C., Bouillon, R., van Baelen, H., Ridall, A. L., Daane, E., Khoury, R., and Farach-Carson, M. C. (1997). Comparison of 6-s-cis- and 6-s-trans-locked analogues of 1α,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid non-genomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogues are preferred for genomic biological responses. Mol. Endocrinol. 11, 1518–1531.
| Comparison of 6-s-cis- and 6-s-trans-locked analogues of 1α,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid non-genomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogues are preferred for genomic biological responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsF2mtL8%3D&md5=22c9b2bac1debffd6df59a7ebc6270eeCAS | 9280067PubMed |
Norman, A. W., Henry, H. L., Bishop, J. E., Song, X.-D., Bula, C., and Okamura, W. (2001). Different shapes of the steroid hormone 1α,25(OH)2 vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid response. Steroids 66, 147–158.
| Different shapes of the steroid hormone 1α,25(OH)2 vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFehsb8%3D&md5=3fbf930512247161948396184a6806bdCAS | 11179722PubMed |
O’Donnell, L., Robertson, K. M., Jones, M. E., and Simpson, E. R. (2001). Oestrogen and spermatogenesis. Endocr. Rev. 22, 289–318.
| Oestrogen and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVOgurw%3D&md5=5040d27c2e059cf93d2495f8caa544d5CAS | 11399746PubMed |
Osmundsen, B. C., Huang, H. F., Anderson, M. B., Christakos, S., and Walters, M. R. (1989). Multiple sites of action of the vitamin D endocrine system: FSH stimulation of testis 1,25-dihydroxyvitamin D3 receptors. J. Steroid Biochem. 34, 339–343.
| Multiple sites of action of the vitamin D endocrine system: FSH stimulation of testis 1,25-dihydroxyvitamin D3 receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtleis7k%3D&md5=05db1f3c012a85f5683c942982ecab82CAS | 2576296PubMed |
Papadopoulos, V., Carreau, S., and Drosdowsky, M. A. (1985). Effects of phorbol ester and phospholipase C on LH-stimulated steroidogenesis in purified rat Leydig cells. FEBS Lett. 188, 312–316.
| Effects of phorbol ester and phospholipase C on LH-stimulated steroidogenesis in purified rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsFCns7o%3D&md5=2f88be739b812c15e157c58f9c46a6e1CAS | 2993025PubMed |
Pino, A. M., Rodriguez, J. M., Rios, S., Astudillo, P., Leiva, L., Seitz, G., Fernandez, M., and Rodriguez, J. P. (2006). Aromatase activity of human mesenchymal stem cells is stimulates by early differentiation, vitamin D and leptin. J. Endocrinol. 191, 715–725.
| Aromatase activity of human mesenchymal stem cells is stimulates by early differentiation, vitamin D and leptin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ensrg%3D&md5=25d7d4f0e0c043d428c44fe0be42338dCAS | 17170228PubMed |
Roig, E. A., Richer, E., Canonne-Hergaux, F., Gros, P., and Cellier, M. F. M. (2002). Regulation of NRAMP1 gene expression by 1α,25-dihydroxyvitamin D3 in HL-60 phagocytes. J. Leukoc. Biol. 71, 890–904.
| 1:CAS:528:DC%2BD38Xjs12rs70%3D&md5=aff4e9a5339650bac7921c8587ddfd54CAS | 11994515PubMed |
Shi, H., Norman, A. W., Okamura, W. H., Sen, A., and Zemel, M. B. (2001). 1α,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via non-genomic action. FASEB J. 15, 2751–2753.
| 1:CAS:528:DC%2BD3MXptFagtLc%3D&md5=d5a04587bbac1a3f434a18373e775b0cCAS | 11606486PubMed |
Silandre, D., Delalande, C., Durand, P., and Carreau, S. (2007). Three promoters PII, PI.f and PI.tr direct the expression of aromatase (cyp19) gene in male rat germ cells. J. Mol. Endocrinol. 39, 169–181.
| Three promoters PII, PI.f and PI.tr direct the expression of aromatase (cyp19) gene in male rat germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWmsb4%3D&md5=793ae64f54af21fb910eeac20a189df6CAS | 17693615PubMed |
Song, X., Bishop, J. E., Okamura, W. H., and Norman, A. W. (1998). Stimulation of phosphorylation of mitogen-activated protein kinase by 1α,25-dihydroxyvitamin D3 in promyelocytic NB4 leukaemia cells: a structure–function study. Endocrinology 139, 457–465.
| Stimulation of phosphorylation of mitogen-activated protein kinase by 1α,25-dihydroxyvitamin D3 in promyelocytic NB4 leukaemia cells: a structure–function study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1KrsQ%3D%3D&md5=74dc0be000ef803eeeb091d0b5ec843fCAS | 9449611PubMed |
Stumpf, W. E., and Denny, M. E. (1989). Vitamin D (soltriol), light and reproduction. Am. J. Obstet. Gynecol. 161, 1375–1384.
| 1:STN:280:DyaK3c%2Fnt1ehsg%3D%3D&md5=2f0fdeadef455a0d6c0b2f03c4f5bae0CAS | 2686450PubMed |
Tanaka, S., Haji, M., Takayanagi, R., Tanaka, S., Sugioka, Y., and Nawata, H. (1996). 1,25-Dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts. Endocrinology 137, 1860–1869.
| 1,25-Dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFCqs78%3D&md5=276b61de4c3417d9373c84078d06bfa4CAS | 8612525PubMed |
Tena-Sempere, M., Barreiro, M. L., Gonzales, L. C., Gaytan, F., Zhang, F. P., Carminos, J. E., Pinilla, L., Casanueva, F. F., Dieguez, C., and Aguilar, E. (2002). Novel expression and functional role of ghrelin in rat testis. Endocrinology 143, 717–725.
| Novel expression and functional role of ghrelin in rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFajuw%3D%3D&md5=38cee62b8a661daa19ce8d38a1b1b558CAS | 11796529PubMed |
Tissandié, E., Guéguen, Y., Lobaccaro, J. M. A., Grandcolas, L., Voisin, P., Aigueperse, J., Gourmelon, P., and Souidi, M. (2007). In vivo effects of chronic contamination with depleted uranium on vitamin D3 metabolism in rat. Biochim. Biophys. Acta 1770, 266–272.
| 17118558PubMed |
Walters, M. R. (1984). 1,25-Dihydroxyvitamin D3 receptors in the seminiferous tubules of the rat testis increase at puberty. Endocrinology 114, 2167–2174.
| 1,25-Dihydroxyvitamin D3 receptors in the seminiferous tubules of the rat testis increase at puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktFyiu7g%3D&md5=9b33001345d686d1ec79f078e55d6b23CAS | 6327237PubMed |
Yague, J. G., Garcia-Segura, L. M., and Azcoitia, I. (2009). Selective transcriptional regulation of aromatase gene by vitamin D, dexamethasone and mifepristone in human glioma cells. Endocrine 35, 252–261.
| Selective transcriptional regulation of aromatase gene by vitamin D, dexamethasone and mifepristone in human glioma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVCqtLo%3D&md5=1877badcd37a91e5e70dd88d3670fd1bCAS | 19116788PubMed |
Zamoner, A., Pierozan, P., Vidal, L. F., Lacerda, B. A., dos Santos, N. G., Vanzin, C. S., and Pessoa-Pureur, R. (2008). Vimentin phosphorylation as a target of cell signalling mechanisms induced by 1α,25-dihydroxyvitamin D3 in immature rat testes. Steroids 73, 1400–1408.
| Vimentin phosphorylation as a target of cell signalling mechanisms induced by 1α,25-dihydroxyvitamin D3 in immature rat testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyiurvM&md5=9ec64993ac57da664b8ac584c230871aCAS | 18687349PubMed |