Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The early embryo response to intracellular reactive oxygen species is developmentally regulated

Nathan T. Bain A , Pavneesh Madan A and Dean H. Betts A B C
+ Author Affiliations
- Author Affiliations

A Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

B Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.

C Corresponding author. Email: dean.betts@schulich.uwo.ca

Reproduction, Fertility and Development 23(4) 561-575 https://doi.org/10.1071/RD10148
Submitted: 16 June 2010  Accepted: 17 November 2010   Published: 3 May 2011

Abstract

In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O2) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O2 tension; (2) exogenous H2O2 treatment; and (3) antioxidant supplementation. Although O2 tension did not significantly affect blastocyst frequencies (P > 0.05), 20% O2 accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O2 tension. Treatment with H2O2, when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P < 0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol–catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P < 0.05) increase in blastocyst frequencies under high O2 culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

Additional keywords: antioxidant, apoptosis, bovine, embryo arrest, hydrogen peroxide.


References

Almeida, P. A., and Bolton, V. N. (1998). Cytogenetic analysis of human preimplantation embryos following developmental arrest in vitro. Reprod. Fertil. Dev. 10, 505–513.
Cytogenetic analysis of human preimplantation embryos following developmental arrest in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FltlKjsQ%3D%3D&md5=2c4de3f5af69594e85ac13b4c642ef39CAS | 10588382PubMed |

Balasubramanian, S., Son, W. J., Kumar, B. M., Ock, S. A., Yoo, J. G., Im, G. S., Choe, S. Y., and Rho, G. J. (2007). Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology 68, 265–275.
Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFKgsb4%3D&md5=770edbb3807e9c8911a7f2c357488cadCAS | 17559922PubMed |

Barnett, D. K., and Bavister, B. D. (1996). What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol. Reprod. Dev. 43, 105–133.
What is the relationship between the metabolism of preimplantation embryos and their developmental competence?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFehtw%3D%3D&md5=7fb7fd3063cb033701f25ddd8e804f0bCAS | 8720119PubMed |

Batt, P. A., Gardner, D. K., and Cameron, A. W. (1991). Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod. Fertil. Dev. 3, 601–607.
Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVKls7s%3D&md5=014bed37f8a81f0e73509761e0891f07CAS | 1788401PubMed |

Beckman, J. S., Minor, R. L.,, White, C. W., Repine, J. E., Rosen, G. M., and Freeman, B. A. (1988). Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J. Biol. Chem. 263, 6884–6892.
| 1:CAS:528:DyaL1cXitFKgsLw%3D&md5=1dceb5d96ae060c0f22d0af100f024d6CAS | 3129432PubMed |

Bernardi, M. L., Flechon, J. E., and Delouis, C. (1996). Influence of culture system and oxygen tension on the development of ovine zygotes matured and fertilized in vitro. J. Reprod. Fertil. 106, 161–167.
Influence of culture system and oxygen tension on the development of ovine zygotes matured and fertilized in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKnsbw%3D&md5=28a73d38ed7549040bcd01e17fbdc83bCAS | 8699397PubMed |

Betterbed, B., and Wright, R. W. (1985). Development of one-cell ovine embryos in two culture media under two gas atmospheres. Theriogenology 23, 547–553.
Development of one-cell ovine embryos in two culture media under two gas atmospheres.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVOqsA%3D%3D&md5=f07be5a92a673e247db5af6bbfd939faCAS | 16726024PubMed |

Betts, D. H., and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
Genetic regulation of embryo death and senescence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7nslartw%3D%3D&md5=1407fed99c2d4175411a1e65993aeec7CAS | 11198081PubMed |

Betts, D. H., and Madan, P. (2008). Permanent embryo arrest: molecular and cellular concepts. Mol. Hum. Reprod. 14, 445–453.
Permanent embryo arrest: molecular and cellular concepts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjsr7I&md5=928b43e8e4915b13b452fb9d859cc63dCAS | 18511487PubMed |

Brad, A. M., Hendricks, K. E., and Hansen, P. J. (2007). The block to apoptosis in bovine two-cell embryos involves inhibition of caspase-9 activation and caspase-mediated DNA damage. Reproduction 134, 789–797.
The block to apoptosis in bovine two-cell embryos involves inhibition of caspase-9 activation and caspase-mediated DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1ehtA%3D%3D&md5=30de646e9091908069f2cc04b3e0aa0dCAS | 18042636PubMed |

Chatot, C. L., Lewis, J. L., Torres, I., and Ziomek, C. A. (1990). Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–440.
Development of 1-cell embryos from different strains of mice in CZB medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3lsVansw%3D%3D&md5=05b4279a7e927b00809f5e6d7e854dc7CAS | 2111184PubMed |

Dalvit, G. C., Cetica, P. D., Pintos, L. N., and Beconi, M. T. (2005). Reactive oxygen species in bovine embryo in vitro production. Biocell 29, 209–212.
| 1:CAS:528:DC%2BD2MXhtFSns73M&md5=1c845978ba504c56c16d5a569be0c893CAS | 16187501PubMed |

de Castro e Paula, L. A., and Hansen, P. J. (2007). Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology 68, 763–770.
Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Sgs7g%3D&md5=5b72e63e7a45536755c3df763bffb1c4CAS | 17643482PubMed |

DeYulia, G. J., and Carcamo, J. M. (2005). EGF receptor–ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases. Biochem. Biophys. Res. Commun. 334, 38–42.
EGF receptor–ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1aqsLo%3D&md5=bf6ea4248a9b3b9404d33237a0de2819CAS | 15982634PubMed |

DeYulia, G. J.,, Carcamo, J. M., Borquez-Ojeda, O., Shelton, C. C., and Golde, D. W. (2005). Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc. Natl Acad. Sci. USA 102, 5044–5049.
Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFemt74%3D&md5=0de1adf235e8eb0a1be75cdaa7aea012CAS |

Du, Z. F., and Wales, R. G. (1993). Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod. Fertil. Dev. 5, 383–393.
Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFenu7k%3D&md5=4184c4c9c0a65cc21a46bf74612df33dCAS | 8153388PubMed |

Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., and Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Semin. Cell Dev. Biol. 20, 346–353.
Mitochondrial function and redox state in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLo%3D&md5=25e1fc9e0f9e850d0407f720a8e6a735CAS | 19530278PubMed |

Dumoulin, J. C., Meijers, C. J., Bras, M., Coonen, E., Geraedts, J. P., and Evers, J. L. (1999). Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum. Reprod. 14, 465–469.
Effect of oxygen concentration on human in-vitro fertilization and embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7pvFOlug%3D%3D&md5=a2b409b06b1949ae9e988842d5714cacCAS | 10099995PubMed |

English, V. (2006). Autonomy versus protection: who benefits from the regulation of IVF? Hum. Reprod. 21, 3044–3049.
Autonomy versus protection: who benefits from the regulation of IVF?Crossref | GoogleScholarGoogle Scholar | 16885389PubMed |

Enright, B. P., Lonergan, P., Dinnyes, A., Fair, T., Ward, F. A., Yang, X., and Boland, M. P. (2000). Culture of in vitro produced bovine zygotes in vitro vs in vivo: implications for early embryo development and quality. Theriogenology 54, 659–673.
Culture of in vitro produced bovine zygotes in vitro vs in vivo: implications for early embryo development and quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FovVGrsg%3D%3D&md5=48686f28cf98f8cab42c55445240f10fCAS | 11101029PubMed |

Fabian, D., Il’kova, G., Rehak, P., Czikkova, S., Baran, V., and Koppel, J. (2004). Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro. Theriogenology 61, 745–755.
Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvF2ru74%3D&md5=f01beb2fe2fd2d8afd31ceb5021b2870CAS | 14698063PubMed |

Fatehi, A. N., Roelen, B. A., Colenbrander, B., Schoevers, E. J., Gadella, B. M., Beverst, M. M., and van den Hurk, R. (2005). Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote 13, 177–185.
Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlSisb0%3D&md5=b27311b9747bf7b1e2b01bedfaf8cb52CAS | 16128413PubMed |

Favetta, L. A., Robert, C., King, W. A., and Betts, D. H. (2004a). Expression profiles of p53 and p66shc during oxidative stress-induced senescence in fetal bovine fibroblasts. Exp. Cell Res. 299, 36–48.
Expression profiles of p53 and p66shc during oxidative stress-induced senescence in fetal bovine fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVKgtbc%3D&md5=37ecc1f4ec17cd7604a35094951ca890CAS | 15302571PubMed |

Favetta, L. A., Robert, C., St John, E. J., Betts, D. H., and King, W. A. (2004b). p66shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos. Mol. Hum. Reprod. 10, 383–392.
p66shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSisr8%3D&md5=9dc9023d32f32c5655a83b2501664658CAS | 15064348PubMed |

Favetta, L. A., Madan, P., Mastromonaco, G. F., St John, E. J., King, W. A., and Betts, D. H. (2007a). The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC Dev. Biol. 7, 132.
The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro.Crossref | GoogleScholarGoogle Scholar | 18047664PubMed |

Favetta, L. A., St John, E. J., King, W. A., and Betts, D. H. (2007b). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med. 42, 1201–1210.
High levels of p66shc and intracellular ROS in permanently arrested early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGhtb0%3D&md5=f3dcd9bb3b7fbf553056e7a3d3090664CAS | 17382201PubMed |

Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D. J., Watkins, A. J., and Eckert, J. J. (2004). The embryo and its future. Biol. Reprod. 71, 1046–1054.
The embryo and its future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrg%3D&md5=be62fc47c5e7f73da01549c09a296e93CAS | 15215194PubMed |

Forristal, C. E., Wright, K. L., Hanley, N. A., Oreffo, R. O. C., and Houghton, F. D. (2010). Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139, 85–97.
Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmsg%3D%3D&md5=4c029909d2f8b05bcf76dc19c4a00a4aCAS | 19755485PubMed |

Furman, O., Laine, D. F., Blumenfeld, A., Teel, A. L., Shimizu, K., Cheng, I. F., and Watts, R. I. (2009). Enhanced reactivity of superoxide in water–solid matrices. Environ. Sci. Technol. 43, 1528–1533.
Enhanced reactivity of superoxide in water–solid matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCkuro%3D&md5=d990f8f10da3d6f4a9e8d585c9006a78CAS | 19350930PubMed |

Gardner, D. K., and Lane, M. (1996). Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum. Reprod. 11, 2703–2712.
| 1:CAS:528:DyaK2sXhs1OjtL8%3D&md5=b62a7e212ed1112320489ebef9f1e1bdCAS | 9021376PubMed |

Geshi, M., Takenouchi, N., Yamauchi, N., and Nagai, T. (2000). Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells. Biol. Reprod. 63, 1730–1734.
Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKht70%3D&md5=e8d80f3b0fdc2d97e384b38c8acc7c37CAS | 11090443PubMed |

Gjørret, J. O., Knijn, H. M., Dieleman, S. J., Avery, B., Larsson, L. I., and Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol. Reprod. 69, 1193–1200.
Chronology of apoptosis in bovine embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 12773422PubMed |

Gomes, A., Fernandes, E., and Lima, J. L. (2005). Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80.
Fluorescence probes used for detection of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCqtLjL&md5=18b42689627d2ddade6c06fb5c593ffaCAS | 16297980PubMed |

Guérin, P., El Mouatassim, S., and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 11284661PubMed |

Hachiya, M., and Akashi, M. (2005). Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2). Radiat. Res. 163, 271–282.
Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVWnsr8%3D&md5=891af670e853211c6ef0ea3c9196ff6cCAS | 15733034PubMed |

Hardy, K., Spanos, S., Becker, D., Iannelli, P., Winston, R. M., and Stark, J. (2001). From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc. Natl Acad. Sci. USA 98, 1655–1660.
From cell death to embryo arrest: mathematical models of human preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWju78%3D&md5=a57c954c4aeb5b84ed9235b43e465183CAS |

Hashimoto, S., Minami, N., Takakura, R., Yamada, M., Imai, H., and Kashima, N. (2000a). Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol. Reprod. Dev. 57, 353–360.
Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFaiurc%3D&md5=4c6b80387987e737bcf832832b010dbfCAS | 11066064PubMed |

Hashimoto, S., Minami, N., Yamada, M., and Imai, H. (2000b). Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents. Mol. Reprod. Dev. 56, 520–526.
Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslKlur8%3D&md5=8f8faedd62b298d64c57102c57d79f4aCAS | 10911402PubMed |

Johnson, M. H., and Nasr-Esfahani, M. H. (1994). Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16, 31–38.
Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFGhu7c%3D&md5=88d8e39970fa1221eed47001017b117aCAS | 8141805PubMed |

Karja, N. W., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., Noguchi, J., Kaneko, H., and Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4, 54.
Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 17087833PubMed |

Khurana, N. K., and Niemann, H. (2000). Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology 54, 741–756.
Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FovVGrtA%3D%3D&md5=aacc56c70077cb6746a89a6cb693e405CAS | 11101035PubMed |

Khurana, N. K., and Wales, R. G. (1989). Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro. Reprod. Fertil. Dev. 1, 99–106.
Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1yks78%3D&md5=58c3aa1dc1db8c03a9d6f83ed55a75bdCAS | 2798946PubMed |

Kim, I. H., Van Langendonckt, A., Van Soom, A., Vanroose, G., Casi, A. L., Hendriksen, P. J., and Bevers, M. M. (1999). Effect of exogenous glutathione on the in vitro fertilization of bovine oocytes. Theriogenology 52, 537–547.
Effect of exogenous glutathione on the in vitro fertilization of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlyhurk%3D&md5=ae6efa7a3eb7904c27b865abf1af2d12CAS | 10734387PubMed |

Koch, O. R., Fusco, S., Ranieri, S. C., Maulucci, G., Palozza, P., Larocca, L. M., Cravero, A. A. M., Farré, S. M., De Spirito, M., Galeotti, T., and Pani, G. (2008). Role of the life span determinant P66shcA in ethanol-induced liver damage. Lab. Invest. 88, 750–760.
Role of the life span determinant P66shcA in ethanol-induced liver damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFKqurg%3D&md5=269805c9b60d023f9bb9be9bbe06d358CAS | 18490896PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
| 1:STN:280:DyaK3szgvFyqsA%3D%3D&md5=6f7584d20688a7cf518c2e1d08ab6d79CAS | 1845337PubMed |

Leyens, G., Verhaeghe, B., Landtmeters, M., Marchandise, J., Knoops, B., and Donnay, I. (2004). Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication. Biol. Reprod. 71, 1646–1651.
Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yitr8%3D&md5=425d9cd5e3861ed32ce09e4a62f615ddCAS | 15240427PubMed |

Liu, L., Trimarchi, J. R., and Keefe, D. L. (2000). Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol. Reprod. 62, 1745–1753.
Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsbg%3D&md5=11968337a1a749342769d17aa16aee0dCAS | 10819779PubMed |

Luvoni, G. C., Keskintepe, L., and Brackett, B. G. (1996). Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol. Reprod. Dev. 43, 437–443.
Improvement in bovine embryo production in vitro by glutathione-containing culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVGjs70%3D&md5=532f4fdc755c90e5d76cfed816833b5fCAS | 9052934PubMed |

Manser, R. C., Leese, H. J., and Houghton, F. D. (2004). Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol. Reprod. 71, 528–533.
Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtbY%3D&md5=91e4f37d97bcec67e5723c8ffcb06367CAS | 15070826PubMed |

Matwee, C., Betts, D. H., and King, W. A. (2000). Apoptosis in the early bovine embryo. Zygote 8, 57–68.
Apoptosis in the early bovine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVemtLw%3D&md5=4b86240059161ca4b86fe2776175dc2bCAS | 10840875PubMed |

Morales, H., Tilquin, P., Rees, J. F., Massip, A., Dessy, F., and Van Langendonckt, A. (1999). Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol. Reprod. Dev. 52, 149–157.
Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVaiuw%3D%3D&md5=033f5c75438cd41cc0ba4eb3a63f76eeCAS | 9890745PubMed |

Nagao, Y., Saeki, K., Hoshi, M., and Kainuma, H. (1994). Effects of oxygen concentration and oviductal epithelial tissue on the development of in vitro matured and fertilized bovine oocytes cultured in protein-free medium. Theriogenology 41, 681–687.
Effects of oxygen concentration and oviductal epithelial tissue on the development of in vitro matured and fertilized bovine oocytes cultured in protein-free medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWrsg%3D%3D&md5=a7c5a3617dd83f0afa9425bbbc2d292eCAS | 16727422PubMed |

Nonogaki, T., Noda, Y., Narimoto, K., Umaoka, Y., and Mori, T. (1992). Effects of superoxide dismutase on mouse in vitro fertilization and embryo culture system. J. Assist. Reprod. Genet. 9, 274–280.
Effects of superoxide dismutase on mouse in vitro fertilization and embryo culture system.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zpvF2gtA%3D%3D&md5=fa628f932dc1c0b80af334cd4a4b64f0CAS | 1525461PubMed |

Olson, S. E., and Seidel, G. E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 62, 248–252.
Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOktA%3D%3D&md5=174c90d236069fa31b9a5f2a422dc265CAS | 10642559PubMed |

Orsi, N. M., and Leese, H. J. (2001). Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol. Reprod. Dev. 59, 44–53.
Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1amu7c%3D&md5=9e7c9f19b341212d3afc4d8c8e545b74CAS | 11335946PubMed |

Pabon, J. E., Findley, W. E., and Gibbons, W. E. (1989). The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 51, 896–900.
| 2707466PubMed |

Pani, G., Koch, O. R., and Galeotti, T. (2009). The p53–p66shc–manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int. J. Biochem. Cell Biol. 41, 1002–1005.
The p53–p66shc–manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVGjsLs%3D&md5=d599ff4f5a455921a9e3a4b2b4cbb01eCAS | 18992840PubMed |

Parrish, J. J., Susko-Parrish, J., Winer, M. A., and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
Capacitation of bovine sperm by heparin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslWit7g%3D&md5=e474b9ad2ed902b364e1c1f9b740f2ebCAS | 3408784PubMed |

Paula-Lopes, F. F., and Hansen, P. J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–1177.
| 1:CAS:528:DC%2BD38XitlClu7g%3D&md5=a76ced129ff9bace6379d4f25ebf39a9CAS | 11906938PubMed |

Russell, D. F., Baqir, S., Bordignon, J., and Betts, D. H. (2006). The impact of oocyte maturation media on early bovine embryonic development. Mol. Reprod. Dev. 73, 1255–1270.
The impact of oocyte maturation media on early bovine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnu7w%3D&md5=6cdfd956d8f8afb56ea3b61a92e7a984CAS | 16865717PubMed |

Sakatani, M., Kobayashi, S., and Takahashi, M. (2004). Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Mol. Reprod. Dev. 67, 77–82.
Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1ems7o%3D&md5=1d6554d0b7c999b0480c42d1f2967aacCAS | 14648877PubMed |

Salmen, J. J., Skufca, F., Matt, A., Gushansky, G., Mason, A., and Gardiner, C. S. (2005). Role of glutathione in reproductive tract secretions on mouse preimplantation embryo development. Biol. Reprod. 73, 308–314.
Role of glutathione in reproductive tract secretions on mouse preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLw%3D&md5=904c87c49d2072fdba4a4b8c767ddb01CAS | 15829622PubMed |

Silva, P. F., Gadella, B. M., Colenbrander, B., and Roelen, B. A. (2007). Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology 67, 609–619.
Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyqug%3D%3D&md5=537059c903481dc471acb5252451f7d3CAS | 17056104PubMed |

Sokal, R. R., and Rohlf, F. J. (1995). ‘Biometry: The Principles and Practice of Statistics in Biological Research.’ (W. H. Freeman and Co.: New York.)

Steinbrecher, U. P. (1988). Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim. Biophys. Acta 959, 20–30.
| 1:CAS:528:DyaL1cXhsVyitb0%3D&md5=beb8e8ab985bd011aae550b3c5953ef4CAS | 2830901PubMed |

Suzuki, S., Komatsu, S., Kitai, H., Endo, Y., Iizuka, R., and Fukasawa, T. (1988). Analysis of cytoplasmic factors in developmental cleavage of mouse embryo. Cell Differ. 24, 133–138.
Analysis of cytoplasmic factors in developmental cleavage of mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslWjsr0%3D&md5=1b65b128dc521a695a7092730ba03022CAS | 3145151PubMed |

Takahashi, M., Nagai, T., Okamura, N., Takahashi, H., and Okano, A. (2002). Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol. Reprod. 66, 562–567.
Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitL4%3D&md5=c90a6b7586a63b899ce80e4df6e7ac4aCAS | 11870058PubMed |

Tatemoto, H., Sakurai, N., and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu78%3D&md5=0d4b18f1714588a1b57038778f45a32fCAS | 10952924PubMed |

Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., and Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 71, 1150–1157.
Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7c%3D&md5=b95a3238317b4124a8aad1db3d30cbe3CAS | 15175235PubMed |

Tervit, H. R., Whittingham, D. G., and Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
Successful culture in vitro of sheep and cattle ova.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FgvFamug%3D%3D&md5=7c17c2c6715f63a7c69e67f576c3f1beCAS | 4672493PubMed |

Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.
Apoptosis in the pathogenesis and treatment of disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlClt70%3D&md5=8d1678aaec49cafa6c65e972884ecf2cCAS | 7878464PubMed |

Thompson, J. G., and Peterson, A. J. (2000). Bovine embryo culture in vitro: new developments and post-transfer consequences. Hum. Reprod. 15, 59–67.

Thompson, J. G., Simpson, A. C., Pugh, P. A., Donnelly, P. E., and Tervit, H. R. (1990). Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–578.
Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2nsLk%3D&md5=c0430d39c34f74c1d56e5ccd9835860fCAS | 2401984PubMed |

Thouas, G. A., Trounson, A. O., and Jones, G. M. (2006). Developmental effects of sublethal mitochondrial injury in mouse oocytes. Biol. Reprod. 74, 969–977.
Developmental effects of sublethal mitochondrial injury in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2ju7w%3D&md5=79bd709f614d423ba198317d26868899CAS | 16452460PubMed |

Trimarchi, J. R., Liu, L., Porterfield, D. M., Smith, P. J., and Keefe, D. L. (2000). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 62, 1866–1874.
Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2ht78%3D&md5=29983e7324962c0149209dd9dc4d880fCAS | 10819794PubMed |

Van Soom, A., Yuan, Y. Q., Peelman, L. J., de Matos, D. G., Dewulf, J., Laevens, H., and de Kruif, A. (2002). Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology 57, 1453–1465.
Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCntL4%3D&md5=af882410733160dedc07cc6e1b8c2379CAS | 12054204PubMed |

Varum, S., Momcilovic, O., Castro, C., Ben-Yehudah, A., Ramalho-Santos, J., and Navara, C. S. (2009). Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res. 3, 142–156.
Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGmsb%2FL&md5=5e1ddd636a7fc1da7e851507d58239b6CAS | 19716358PubMed |

Xu, K. P., Yadav, B. R., Rorie, R. W., Plante, L., Betteridge, K. J., and King, W. A. (1992). Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviducal epithelial cells. J. Reprod. Fertil. 94, 33–43.
Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviducal epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383gtlagsg%3D%3D&md5=4ea0fe22d0c8694d81226e1733cfa2ecCAS | 1552490PubMed |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=6918a8b63336ed3ed8b130b96676d538CAS | 9619561PubMed |

Zander, D. L., Thompson, J. G., and Lane, M. (2006). Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol. Reprod. 74, 288–294.
Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1KlsA%3D%3D&md5=9bcf371ab42fda8e13e9877887515b21CAS | 16221986PubMed |