Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression of functional melatonin MT1 receptors in equine luteal cells: in vitro effects of melatonin on progesterone secretion

Marcos Pedreros A , Marcelo Ratto B and Montserrat Guerra C D
+ Author Affiliations
- Author Affiliations

A Facultad de Medicina Veterinaria, Universidad San Sebastián, General Cruz N° 1577, Concepción, Chile.

B Instituto de Ciencia Animal, Facultad de Ciencias Veterinaria, Universidad Austral de Chile, 5678 Valdivia, Chile.

C Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, 5678 Valdivia, Chile.

D Corresponding author. Email: monserratguerra@uach.cl

Reproduction, Fertility and Development 23(3) 417-423 https://doi.org/10.1071/RD10137
Submitted: 11 June 2010  Accepted: 9 September 2010   Published: 3 February 2011

Abstract

In the present study, we analysed the molecular mechanism(s) by which melatonin directly affects ovarian function in the mare. In Experiment 1, follicles and corpora lutea (CL) were collected from slaughterhouse ovaries and analysed for melatonin (MT1) receptor mRNA and protein. In Experiment 2, CL were collected from slaughterhouse ovaries and cultured in Dulbecco’s modified Eagle’s medium-F12 medium (control medium) supplemented with 50 ng mL–1 equine chorionic gonadotrophin (eCG), 1 nM–1 μM melatonin, 1 μM forskolin or 1 μM luzindole. Explants were cultured for 3 h in the presence of these drugs. Conditioned media were analysed for progesterone production; luteal cells were analysed for cholesterol side-chain cleavage enzyme (P450scc), a steroidogenic enzyme that converts cholesterol into pregnenolone. Both MT1 receptor mRNA and protein were expressed in follicles and CL. Melatonin inhibited both the eCG- and forskolin-stimulated production of progesterone, as well as the forskolin-stimulated expression of P450scc, in equine luteal cells and the effect was dose-dependent. The inhibitory effect of melatonin was blocked by luzindole, a non-selective melatonin MT1 and MT2 receptor antagonist. The data support the presence of functional melatonin receptors in luteal cells and a regulatory role for melatonin in the endocrine function of the equine CL.

Additional keyword: steroidogenesis.


References

Adams, G. P., and Bosu, W. T. (1988). Reproductive physiology of the nonpregnant mare. An overview and update. Vet. Clin. North Am. Equine Pract. 4, 161–176..
| 1:STN:280:DyaL1czhtVGntQ%3D%3D&md5=cbc9a1916de8a288a5f2a55e6b927c42CAS |

Becker-André, M., Wiesenberg, I., Schaerenwiemers, N., André, E., Missbach, M., Saurat, J. H., and Carlberg, C. (1994). Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J. Biol. Chem. 269, 28 531–28 534..

Boutin, J. A., Audinot, V., Ferry, G., and Delagrange, P. (2005). Molecular tools to study melatonin pathways and actions. Trends Pharmacol. Sci. 26, 412–419.
Molecular tools to study melatonin pathways and actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVCqtL0%3D&md5=8b1363ba59a0434e8237bf2ff050b144CAS | 15992934PubMed |

Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254..
| 1:CAS:528:DyaE28XksVehtrY%3D&md5=14300a26927bd8f0c2e23c515fdbb33cCAS | 942051PubMed |

Carlberg, C., and Wiesenberg, I. (1995). The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship. J. Pineal Res. 18, 171–178.
The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1KjsLo%3D&md5=757205757e510c4cbfaa7f4cd7278c0fCAS | 8531047PubMed |

Cleaver, B. D., Grubaugh, W. R., Davis, S. D., Sheerin, P. C., Franklin, K. J., and Sharp, D. C. (1991). Effect of constant light exposure on circulating gonadotrophin levels and hypothalamic gonadotrophin-releasing hormone (GnRH) content in the ovariectomized pony mare. J. Reprod. Fertil. Suppl. 44, 259–266..
| 1:CAS:528:DyaK38XksVSrurg%3D&md5=d3ffeeb8eae9ba6327bf2c092d08e58cCAS | 1795268PubMed |

Cockrill  T., and Allen  W. E. (1978). Diurnal variation of plasma progestagen concentrations in pony mares. Vet. Rec. 102, 503. [Abstract]573014

Colquhoun, K. M., Eckersall, P. D., Renton, J. P., and Douglas, T. A. (1987). Control of breeding in the mare. Equine Vet. J. 19, 138–142.
Control of breeding in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ptVaqsg%3D%3D&md5=88cccd1e787a87d70e310ddfc0a67330CAS | 3569196PubMed |

Diekman, M. A., Braun, W., Peter, D., and Cook, D. (2002). Seasonal serum concentrations of melatonin in cycling and monocycling mares. J. Anim. Sci. 80, 2949–2952..
| 1:CAS:528:DC%2BD38XoslKgtLs%3D&md5=5ca1f45c309314a2a45bc96a52feb65eCAS | 12462263PubMed |

Guerin, M. V., Deed, J. R., Kennaway, D. J., and Matthews, C. D. (1995). Plasma melatonin in the horse: measurements in natural photoperiod and in acutely extended darkness throughout the year. J. Pin. Res. 19, 7–15..
| 1:CAS:528:DyaK2MXpsFChsLY%3D&md5=fc5af73c7cad5bf60ae160832a1b14e4CAS |

Dubocovich, M. L. (1988). Luzidole (N-0774): a novel melatonin receptor antagonist. J. Pharmacol. Exp. Ther. 246, 902–910..
| 1:CAS:528:DyaL1MXis1I%3D&md5=88255b3940e9721014acf3cb1e15833dCAS | 2843633PubMed |

Ellis, L. C. (1972). Inhibition of rat testicular androgen synthesis in vitro by melatonin and serotonin. Endocrinology 90, 17–28.
Inhibition of rat testicular androgen synthesis in vitro by melatonin and serotonin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1ajsL4%3D&md5=f66e27f70480c23dd4a5ddc5233f00cbCAS | 5061828PubMed |

Federation of Animal Science Societies (2010). Guide for the care and use of agricultural animals in research and teaching. Third edn. Available at http://www.fass.org/docs/agguide3rd/Ag_Guide_3rd_ed.pdf [Verified 14 December 2010]

Fitzgerald, B. P., and McManus, C. J. (2000). Photoperiodic versus metabolic signals as determinants of seasonal anestrus in the mare. Biol. Reprod. 63, 335–340.
Photoperiodic versus metabolic signals as determinants of seasonal anestrus in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2rsbY%3D&md5=80b02999a4eb21721b61326b3a99e878CAS | 10859276PubMed |

Fitzgerald, B. P., Davison, L. A., and McManus, C. J. (2000). Evidence for a seasonal variation in the ability of exogenous melatonin to suppress prolactin secretion in the mare. Domest. Anim. Endocrinol. 18, 395–408.
Evidence for a seasonal variation in the ability of exogenous melatonin to suppress prolactin secretion in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlKqurg%3D&md5=3940e7258da26ba9ba85996838215180CAS | 10869858PubMed |

Fitzgerald, B. P., Reedy, S. E., Sessions, D. R., Powell, D. M., and McManus, C. J. (2002). Potential signals mediating the maintenance of reproductive activity during the non-breeding season of the mare. Reprod. Suppl. 59, 115–129..
| 1:CAS:528:DC%2BD38XmsVajsrk%3D&md5=c7092ab76aaeeebd123769d8465db615CAS | 12698977PubMed |

Fradkin, J. E., Cook, G. H., Kilhoffer, M. C., and Wolff, J. (1982). Forskolin stimulation of thyroid adenylate cyclase and cyclic 3′,5′-adenosine monophosphate accumulation. Endocrinology 111, 849–856.
Forskolin stimulation of thyroid adenylate cyclase and cyclic 3′,5′-adenosine monophosphate accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xltlyguro%3D&md5=78dbbcc2d717a98e7c1849a06f0ba3c4CAS | 6286284PubMed |

Freedman, L. J., Garcia, M. C., and Ginther, O. J. (1979). Influence of ovaries and photoperiod on reproductive function in the mare. J. Reprod. Fertil. Suppl. 27, 79–86..
| 289843PubMed |

Garcia, M. C., Freedman, L. J., and Ginther, O. J. (1979). Interaction of seasonal and ovarian factors in the regulation of LH and FSH secretion in the mare. J. Reprod. Fertil. Suppl. 27, 103–111..
| 289780PubMed |

Ginther, O. J. (1990). Prolonged luteal activity in mares: a semantic quagmire. Equine Vet. J. 22, 152–156.
Prolonged luteal activity in mares: a semantic quagmire.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3pvV2gsQ%3D%3D&md5=1be6b1ff8adf94bf7de402fdac3ef9b5CAS | 2193807PubMed |

Ginther, O. J., Utt, M. D., and Beg, M. A. (2007). Follicle deviation and diurnal variation in circulating hormone concentrations in mares. Anim. Reprod. Sci. 100, 197–203.
Follicle deviation and diurnal variation in circulating hormone concentrations in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2isLg%3D&md5=bae5a645226d3a88018ab9f06120d41aCAS | 17000062PubMed |

Godson, C., and Reppert, S. M. (1997). The Mel1a melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology 138, 397–404.
The Mel1a melatonin receptor is coupled to parallel signal transduction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1Sq&md5=62ec130de5309a22e53728416e3734beCAS | 8977429PubMed |

Grubaugh, W., Sharp, D. C., Berglund, L. A., McDowell, K. J., Kilmer, D. M., Peck, L. S., and Seamans, K. W. (1982). Effects of pinealectomy in pony mares. J. Reprod. Fertil. Suppl. 32, 293–295..
| 1:STN:280:DyaL3s7mtl2muw%3D%3D&md5=7a191bb73a55c4feaa37e63b41dd06b0CAS | 6962863PubMed |

Guillaume, D., and Palmer, E. (1991). Effect of oral melatonin on the date of the first ovulation after ovarian inactivity in mares under artificial photoperiod. J. Reprod. Fertil. Suppl. 44, 249–257..
| 1:CAS:528:DyaK38XltVCktro%3D&md5=136ca0c3ca51c408a60022facd97147eCAS | 1795267PubMed |

Hodge, S. L., Kreider, J. L., Potter, G. D., Harms, P. G., and Fleeger, J. L. (1982). Influence of photoperiod on the pregnant and postpartum mare. Am. J. Vet. Res. 43, 1752–1755..
| 1:CAS:528:DyaL38XlslGqsLw%3D&md5=ccb0796b79872cf824c10d5d32d1d7f9CAS | 7149374PubMed |

Hum, D. W., and Miller, W. L. (1993). Transcriptional regulation of human genes for steroidogenic enzymes. Clin. Chem. 39, 333–340..
| 1:CAS:528:DyaK3sXhsVSktLY%3D&md5=c97b84c9193522a8eac84f93b9436103CAS | 8432024PubMed |

Johnson, A. L. (1987). Seasonal and photoperiod-induced changes in serum prolactin and pituitary responsiveness to thyrotropin-releasing hormone in the mare. Proc. Soc. Exp. Biol. Med. 184, 118–122..
| 1:CAS:528:DyaL2sXps1Cqtw%3D%3D&md5=1beac5f38c6365807f1d25cf05020299CAS | 3099304PubMed |

Kooistra, L. H., and Ginther, O. J. (1975). Effect of photoperiod on reproductive activity and hair in mares. Am. J. Vet. Res. 36, 1413–1419..
| 1:STN:280:DyaE28%2FlvFykuw%3D%3D&md5=a6278453162839b0eaf87f4d89ddb50fCAS | 1238038PubMed |

Laemmli, U. K. (1970). Cleveage of structural proteins during the assembly of the head bacteriophage T4. Nature 227, 680–685.
Cleveage of structural proteins during the assembly of the head bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=af270e6a716a77b40e17f744b93b8b62CAS | 5432063PubMed |

Malinowski, K., Johnson, A. L., and Scanes, C. G. (1985). Effects of interrupted photoperiods on the induction of ovulation in anestrous mares. J. Anim. Sci. 61, 951–955..
| 1:STN:280:DyaL28%2FlvFSgtg%3D%3D&md5=df7c25881a6bab34d81c9ddf4d923ef6CAS | 4066545PubMed |

Nequin, L. G., King, S. S., Matt, K. S., and Jurak, R. C. (1990). The influence of photoperiod on gonadotrophin-releasing hormone stimulated luteinising hormone release in the anoestrous mare. Equine Vet. J. 22, 356–358.
The influence of photoperiod on gonadotrophin-releasing hormone stimulated luteinising hormone release in the anoestrous mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FjtFeqtA%3D%3D&md5=55be3e41080f5a40a5c9ad212c15b410CAS | 2226401PubMed |

Ng, T. B., and Lo, L. L. (1988). Inhibitory actions of pineal indoles on steroidogenesis in isolated rat Leydig cells. J. Pineal Res. 5, 229–243.
Inhibitory actions of pineal indoles on steroidogenesis in isolated rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksVyrtbg%3D&md5=697c4956205562314844456ff8a26ebfCAS | 2841443PubMed |

Niswender, G. D. (2002). Molecular control of luteal secretion of progesterone. Reproduction 123, 333–339.
Molecular control of luteal secretion of progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Clsr8%3D&md5=2633f2c5962e8b063d546dba80ad6e5dCAS | 11882010PubMed |

Niswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., and McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29..
| 1:CAS:528:DC%2BD3cXmtl2jtg%3D%3D&md5=b1aef9cebc69a8caf574410fff759bdbCAS | 10617764PubMed |

Palmer, E., Driancourt, M. A., and Ortavant, R. (1982). Photoperiodic stimulation of the mare during winter anoestrus. J. Reprod. Fertil. Suppl. 32, 275–282..
| 1:STN:280:DyaL3s7mtl2mtQ%3D%3D&md5=1e80f794ec0e1a94f41ebe0d3ae1b579CAS | 6820061PubMed |

Peltier, M. R., Robinson, G., and Sharp, D. C. (1998). Effects of melatonin implants in pony mares 1. Acute effects. Theriogenology 49, 1113–1123.
Effects of melatonin implants in pony mares 1. Acute effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVWmsbg%3D&md5=e30439269fd80b4e8b737a4356be350cCAS | 10732050PubMed |

Reppert, S. M., Weaver, D. R., and Ebisawa, T. (1994). Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13, 1177–1185.
Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlylsLY%3D&md5=81682fda4b016eacaaa1357a44d90feaCAS | 7946354PubMed |

Reppert, S. M., Godson, C., Mahle, C. D., Weaver, D. R., Slaugenhaupt, S. A., and Gusella, J. F. (1995). Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl Acad. Sci. USA 92, 8734–8738.
Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVGqsrk%3D&md5=666e8dea947acdea388b1b2dd2322707CAS |

Sharp, D. C., Kooistra, L., and Ginther, O. J. (1975). Effects of artificial light on the oestrous cycle of the mare. J. Reprod. Fertil. Suppl. 23, 241–246..
| 1060785PubMed |

Stocco, D. M., and Clark, B. J. (1996). Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244..
| 1:CAS:528:DyaK28XktlalsbY%3D&md5=58e77cceafd1e1a549bcd7004a7df784CAS | 8771357PubMed |

Sugawara, T., Kiriakidou, M., McAllister, J. M., Holt, J. A., Arakane, F., and Strauss, J. F. (1997). Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1. Steroids 62, 5–9.
Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7otFGntQ%3D%3D&md5=3464f12bc9f1f11689db03f25a0572beCAS | 9029708PubMed |

Tamura, H., Nakamura, Y., Korkmaz, A., Manchester, L. C., Tan, D. X., Sugino, N., and Reiter, R. J. (2009). Melatonin and the ovary: physiological and pathophysiological implications. Fertil. Steril. 92, 328–343.
Melatonin and the ovary: physiological and pathophysiological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWisLrP&md5=aabd080f12c0d212112397a7a3096eebCAS | 18804205PubMed |

Thomson, M. (1998). Molecular and cellular mechanisms used in the acute phase of stimulated steroidogenesis. Horm. Metab. Res. 30, 16–18.
Molecular and cellular mechanisms used in the acute phase of stimulated steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvF2hsw%3D%3D&md5=5db27073723895004fd4bb6e0cf77ce0CAS | 9503034PubMed |

Torres-Farfan, C., Richter, H. G., Rojas-García, P., Vergara, M., Forcelledo, M. L., Valladares, L. E., Torrealba, F., Valenzuela, G. J., and Serón-Ferré, M. (2003). mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J. Clin. Endocrinol. Metab. 88, 450–458.
mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVChug%3D%3D&md5=bf77f01bb9d82a7f6126ee1e6ad9bb62CAS | 12519889PubMed |

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrilamide gels nitrocellulose sheets: procedure and some application. Proc. Natl Acad. Sci. USA 76, 4350–4354.
Electrophoretic transfer of proteins from polyacrilamide gels nitrocellulose sheets: procedure and some application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtVKltLw%3D&md5=59f873419f1aa66da48b2259f1cfe792CAS |

Valenti, S., Guido, R., Giusti, M., and Giordano, G. (1995). In vitro acute and prolonged effects of melatonin on purified Leydig cell steroidogenesis and adenosine 3′,5′-monophosphate production. Endocrinology 136, 5357–5362.
In vitro acute and prolonged effects of melatonin on purified Leydig cell steroidogenesis and adenosine 3′,5′-monophosphate production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Kju74%3D&md5=2f046d27ceccba9db21d3ab89dbf3975CAS | 7588282PubMed |

Valenti, S., Guisti, M., Guido, R., and Giordano, G. (1997). Melatonin receptors are present in adult rat Leydig cells and are coupled through a pertussis toxin-sensitive G-protein. Eur. J. Endocrinol. 136, 633–639.
Melatonin receptors are present in adult rat Leydig cells and are coupled through a pertussis toxin-sensitive G-protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFWgtr8%3D&md5=e1aca54b821ba83de4149849099a3a40CAS | 9225728PubMed |

Vanecek, J. (1995). Cellular mechanism of melatonin action in neonatal rat pituitary. Neuroendocrinology 61, 27–30.
Cellular mechanism of melatonin action in neonatal rat pituitary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFeqt70%3D&md5=cbc484d5adfe5441d51a0a9e1d01c149CAS | 7537354PubMed |

von Gall, C., Garabette, M. L., Kell, C. A., Frenzel, S., Dehghani, F., Schumm-Draeger, P. M., Weaver, D. R., Korf, H. W., Hastings, M. H., and Stehle, J. H. (2002). Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 5, 234–238.
Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFKjsbc%3D&md5=ba0d0b0c8e481d78e31ae890c21b968aCAS | 11836530PubMed |

Webley, G. E., and Hearn, J. P. (1987). Local production of progesterone by the corpus luteum of the marmoset monkey in response to perfusion with chorionic gonadotrophin and melatonin in vivo. J. Endocrinol. 112, 449–457.
Local production of progesterone by the corpus luteum of the marmoset monkey in response to perfusion with chorionic gonadotrophin and melatonin in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFektLo%3D&md5=09eb93dd5720b185d3fce9fc461225a9CAS | 3559454PubMed |