Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Characterisation of mouse interferon-induced transmembrane protein-1 gene expression in the mouse uterus during the oestrous cycle and pregnancy

Hyun Jung Park A , In Sun Kuk A , Jin Hoi Kim B , Jae Hwan Kim C , Sang Jin Song D , Bum Chae Choi D , Bokyoung Kim E , Nam Hyung Kim F and Hyuk Song A G
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, College of Natural Science, Konkuk University, Chung-ju 380-701, Korea.

B Department of Animal Biotechnology, College of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea.

C CHA Stem Cell Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, Seoul 135-907, Korea.

D Department of Obstetrics and Gynecology, Cration & Love Women’s Hospital, 13-21, Gwangcheon dong, Seo ku, Gwangju 502-210, Korea.

E Department of Physiology, College of Medicine, Konkuk University, Chung-ju 380-701, Korea.

F Department of Animal Science, College of Agriculture, Chungbuk National University, Choung-ju 361-763, Korea.

G Corresponding author. Email: lovelyhusband@kku.ac.kr

Reproduction, Fertility and Development 23(6) 798-808 https://doi.org/10.1071/RD10086
Submitted: 28 April 2010  Accepted: 16 February 2011   Published: 7 July 2011

Abstract

During the oestrous cycle, pregnancy and parturition, the uterus undergoes marked morphological, physiological and functional changes. Amid these changes, the Wnt/β-catenin signalling pathway has been identified as having a crucial role in regulating associated biological events. Recently, based on results from a mouse embryo study, interferon-induced transmembrane protein 1 (Ifitm1) was reported as a downstream molecule of the Wnt/β-catenin signalling pathway. Differential expression patterns of the Ifitm1 gene during the oestrous cycle, pregnancy and parturition were identified in the present study. Quantitative real-time polymerase chain reaction data from uterine samples of mice induced start the oestrous cycle by injection of human chorionic gonadotropin (hCG) and revealed that Ifitm1 mRNA expression increased from late pro-oestrus to metoestrus, and decreased during dioestrus and early pro-oestrus. During pregnancy, Ifitm1 gene expression was minimal until parturition, but increased markedly 2 days after parturition. This significant elevation in Ifitm1 gene expression at post partum stage was identical to Ifitm1 expression after the induction of abortion by injection of prostaglandin F. Interestingly, pregnant mare serum gonadotropin (PMSG) and oestrogen are also facilitates changes in Ifitm1 gene expression in an ovariectomised (OVX) mouse model. Expression of Ifitm1 mRNA was higher in response to PMSG than other hormones investigated. These results suggest that Ifitm1 may be involved in uteri physiology, although the mechanisms involved in the regulation of this gene expression and function in the uterus remain unknown. In the present study, differential expression patterns of the Ifitm1 gene were identified in the uteri of mice and the correlation between the patterns of Ifitm1 gene expression and Wnt/β-catenin signalling discussed.

Additional keywords: Ifitm1, ovariectomy, pregnant mare’s serum gonadotropin, Wnt.


References

Andreu, P., Colnot, S., Godard, C., Laurent-Puig, P., Lamarque, D., Kahn, A., Perret, C., and Romagnolo, B. (2006). Identification of the IFITM family as a new molecular marker in human colorectal tumors. Cancer Res. 66, 1949–1955.
Identification of the IFITM family as a new molecular marker in human colorectal tumors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFamurw%3D&md5=bfd657aacf5d25e1b002e043b55bcca6CAS | 16488993PubMed |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Einspanier, R., Wenigerkind, H., Vermehren, M., Blum, H., Sinowatz, F., and Wolf, E. (2005). Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J. Mol. Endocrinol. 34, 889–908.
Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisL8%3D&md5=d081dd2c742e60fd0ed43902b47546a2CAS | 15956356PubMed |

Bauersachs, S., Mitko, K., Ulbrich, S. E., Blum, H., and Wolf, E. (2008). Transcriptome studies of bovine endometrium reveal molecular profiles characteristic for specific stages of estrous cycle and early pregnancy. Exp. Clin. Endocrinol. Diabetes 116, 371–384.
Transcriptome studies of bovine endometrium reveal molecular profiles characteristic for specific stages of estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgtbzK&md5=ea3a81b386bdb255eed8215c1278de99CAS | 18561091PubMed |

Bethin, K. E., Nagai, Y., Sladek, R., Asada, M., Sadovsky, Y., Hudson, T. J., and Muglia, L. J. (2003). Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol. Endocrinol. 17, 1454–1469.
Microarray analysis of uterine gene expression in mouse and human pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvF2mtbc%3D&md5=821da16e2f26ff58ecf16d46f6536298CAS | 12775764PubMed |

Blitek, A., Waclawik, A., Kaczmarek, M. M., Kiewisz, J., and Ziecik, A. J. (2010). Effect of estrus induction on prostaglandin content and prostaglandin synthesis enzyme expression in the uterus of early pregnant pigs. Theriogenology 73, 1244–1256.
Effect of estrus induction on prostaglandin content and prostaglandin synthesis enzyme expression in the uterus of early pregnant pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWnsro%3D&md5=df070d8040b681fddea3d4be24c2c2c7CAS | 20171718PubMed |

Chen, Q., Zhang, Y., Lu, J., Wang, Q., Wang, S., Cao, Y., Wang, H., and Duan, E. (2009). Embryo–uterine cross-talk during implantation: the role of Wnt signaling. Mol. Hum. Reprod. 15, 215–221.
Embryo–uterine cross-talk during implantation: the role of Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2ktb8%3D&md5=dfae9e49347f5b57185c071f26fdf3f7CAS | 19223336PubMed |

Chen, Y. X., Welte, K., Gebhard, D. H., and Evans, R. L. (1984). Induction of T cell aggregation by antibody to a 16kd human leukocyte surface antigen. J. Immunol. 133, 2496–2501.
| 1:CAS:528:DyaL2cXmt1yhurw%3D&md5=2ad40a856f4bd8e2c430d11a90d8ca13CAS | 6332852PubMed |

Daikoku, T., Song, H., Guo, Y., Riesewijk, A., Mosselman, S., Das, S. K., and Dey, S. K. (2004). Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine–homeobox–Wnt signaling in implantation. Mol. Endocrinol. 18, 1238–1250.
Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine–homeobox–Wnt signaling in implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVOkt7o%3D&md5=79f704fc06141dd464be590ed42e78c0CAS | 14976223PubMed |

Deblandre, G. A., Marinx, O. P., Evans, S. S., Majjaj, S., Leo, O., Caput, D., Huez, G. A., and Wathelet, M. G. (1995). Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J. Biol. Chem. 270, 23 860–23 866.
Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1ehtrs%3D&md5=979d78b38ca87eb377fa1f06740a2e54CAS |

Domino, S. E., and Hurd, E. A. (2004). LacZ expression in Fut2–LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy. Glycobiology 14, 169–175.
LacZ expression in Fut2–LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1aqsg%3D%3D&md5=562128df9e5686f7de9377fd223d5370CAS | 14576173PubMed |

Ekholm, C., Clark, M. R., Magnusson, C., Isaksson, O., and LeMaire, W. J. (1982). Ovulation induced by a gonadotropin releasing hormone analog in hypophysectomized rats involves prostaglandins. Endocrinology 110, 288–290.
Ovulation induced by a gonadotropin releasing hormone analog in hypophysectomized rats involves prostaglandins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XotVCqtw%3D%3D&md5=7aeb45b699c696c0459829add455b16eCAS | 7032895PubMed |

Evans, G. S., Gibson, D. F., Roberts, S. A., Hind, T. M., and Potten, C. S. (1990a). Proliferative changes in the genital tissue of female mice during the oestrous cycle. Cell Tissue Kinet. 23, 619–635.
| 1:STN:280:DyaK3M7hsVSqtQ%3D%3D&md5=bf88d61ca397b77fb321919c0c13b4fbCAS | 2276176PubMed |

Evans, S. S., Lee, D. B., Han, T., Tomasi, T. B., and Evans, R. L. (1990b). Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76, 2583–2593.
| 1:STN:280:DyaK3M%2FptFGjsw%3D%3D&md5=3b7cfb1ccd396f84a616cbffffd0f3dcCAS | 2265250PubMed |

Frey, M., Appenheimer, M. M., and Evans, S. S. (1997). Tyrosine kinase-dependent regulation of L-selectin expression through the Leu-13 signal transduction molecule: evidence for a protein kinase C-independent mechanism of L-selectin shedding. J. Immunol. 158, 5424–5434.
| 1:CAS:528:DyaK2sXjtl2ltro%3D&md5=bf11977c9129281927c276fe769ba3b9CAS | 9164964PubMed |

Friedman, R. L., Manly, S. P., McMahon, M., Kerr, I. M., and Stark, G. R. (1984). Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38, 745–755.
Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmt1ygsLc%3D&md5=7f32ac455d42db9dc38c2962fa9f8ee8CAS | 6548414PubMed |

Girotti, M., and Zingg, H. H. (2003). Gene expression profiling of rat uterus at different stages of parturition. Endocrinology 144, 2254–2265.
Gene expression profiling of rat uterus at different stages of parturition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFehtLY%3D&md5=b160b5c32a68ee2358d451d5362b6671CAS | 12746283PubMed |

Hayashi, K., Burghardt, R. C., Bazer, F. W., and Spencer, T. E. (2007). WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development. Endocrinology 148, 3496–3506.
WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOnsLk%3D&md5=4fe6a56a897fe7c8a23c9fa7934097d2CAS | 17431004PubMed |

Hayashi, K., Erikson, D. W., Tilford, S. A., Bany, B. M., Maclean, J. A., Rucker, E. B., Johnson, G. A., and Spencer, T. E. (2009). Wnt genes in the mouse uterus: potential regulation of implantation. Biol. Reprod. 80, 989–1000.
Wnt genes in the mouse uterus: potential regulation of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVajsro%3D&md5=fa38262b7c2a75660375e38024f351a1CAS | 19164167PubMed |

Ho, C. K., Tetsuka, M., and Hillier, S. G. (1999). Regulation of 11beta-hydroxysteroid dehydrogenase isoforms and glucocorticoid receptor gene expression in the rat uterus. J. Endocrinol. 163, 425–431.
Regulation of 11beta-hydroxysteroid dehydrogenase isoforms and glucocorticoid receptor gene expression in the rat uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1answ%3D%3D&md5=94017a7b14598c7d578daec6e5232ebdCAS | 10588816PubMed |

Hou, X., Tan, Y., Li, M., Dey, S. K., and Das, S. K. (2004). Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Mol. Endocrinol. 18, 3035–3049.
Canonical Wnt signaling is critical to estrogen-mediated uterine growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFShur%2FI&md5=f698fb85ea3316905e391228d191ec0aCAS | 15358837PubMed |

Huelsken, J., and Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553.
New aspects of Wnt signaling pathways in higher vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Krt7s%3D&md5=04977efa9a03eff8bfc21e054f775413CAS | 11532397PubMed |

Katsuyama, M., Sugimoto, Y., Morimoto, K., Hasumoto, K., Fukumoto, M., Negishi, M., and Ichikawa, A. (1997). ‘Distinct cellular localization’ of the messenger ribonucleic acid for prostaglandin E receptor subtypes in the mouse uterus during pseudopregnancy. Endocrinology 138, 344–350.
‘Distinct cellular localization’ of the messenger ribonucleic acid for prostaglandin E receptor subtypes in the mouse uterus during pseudopregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVSq&md5=e36b536f5717f56a49e10ced98ca11efCAS | 8977422PubMed |

Lange, U. C., Saitou, M., Western, P. S., Barton, S. C., and Surani, M. A. (2003). The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev. Biol. 3, 1.
The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srgslOjtg%3D%3D&md5=94f37b12c8f268a5e38eb751bb994801CAS | 12659663PubMed |

Latini, C., Frontini, A., Morroni, M., Marzioni, D., Castellucci, M., and Smith, P. G. (2008). Remodeling of uterine innervation. Cell Tiss. Res. 334, 1–6.
| 1:CAS:528:DC%2BD1cXhtFSmsr7J&md5=637e3ab709d2c4bd7aa3f2be75b0c974CAS |

Lewin, A. R., Reid, L. E., McMahon, M., Stark, G. R., and Kerr, I. M. (1991). Molecular analysis of a human interferon-inducible gene family. Eur. J. Biochem. 199, 417–423.
Molecular analysis of a human interferon-inducible gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1ahtr0%3D&md5=fd3e9dfdad5be93d5da782f6f1f1e68cCAS | 1906403PubMed |

Lickert, H., Cox, B., Wehrle, C., Taketo, M. M., Kemler, R., and Rossant, J. (2005). Dissecting Wnt/beta-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 132, 2599–2609.
Dissecting Wnt/beta-catenin signaling during gastrulation using RNA interference in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCrsb4%3D&md5=9c4f0a82150b280817cdc61e76ec1a26CAS | 15857914PubMed |

Lisovsky, M., Itoh, K., and Sokol, S. Y. (2002). Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis. Curr. Biol. 12, 53–58.
Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1arsw%3D%3D&md5=7876b113c1ab2c63940e261765c85a13CAS | 11790303PubMed |

Miller, C., Pavlova, A., and Sassoon, D. A. (1998). Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle. Mech. Dev. 76, 91–99.
Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVyns7k%3D&md5=8a080de1030bd6ec91006ae10a9e1adbCAS | 9767131PubMed |

Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., and Dufort, D. (2005). Uterine Wnt/beta-catenin signaling is required for implantation. Proc. Natl Acad. Sci. USA 102, 8579–8584.
Uterine Wnt/beta-catenin signaling is required for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCgtrg%3D&md5=0b2d135299aed71e43cf75dd087bb7eeCAS |

Murakami, Y., Otsuki, M., Kusumoto, K., Takeuchi, S., and Takahashi, S. (2005). Estrogen inhibits interleukin-18 mRNA expression in the mouse uterus. J. Reprod. Dev. 51, 639–647.
Estrogen inhibits interleukin-18 mRNA expression in the mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVGjsg%3D%3D&md5=35cb213b3f3870a61b30e1bde3373e29CAS | 16034191PubMed |

Nakamura, T. J., Sellix, M. T., Menaker, M., and Block, G. D. (2008). Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am. J. Physiol. Endocrinol. Metab. 295, E1025–E1031.
Estrogen directly modulates circadian rhythms of PER2 expression in the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWkurbE&md5=071cd7d0d9770e123dde3f915f133e3bCAS | 18728223PubMed |

Nelson, J. F., Felicio, L. S., Osterburg, H. H., and Finch, C. E. (1981). Altered profiles of estradiol and progesterone associated with prolonged estrous cycles and persistent vaginal cornification in aging C57BL/6J mice. Biol. Reprod. 24, 784–794.
Altered profiles of estradiol and progesterone associated with prolonged estrous cycles and persistent vaginal cornification in aging C57BL/6J mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVChtbk%3D&md5=2e6a2c78280b65f141183b1489fc89aaCAS | 7195743PubMed |

Nomura, T., Sasaki, J., Mori, H., Sato, E. F., Watanabe, S., Kanda, S., Matsuura, J., Watanabe, H., and Inoue, M. (1996). Expression of manganese superoxide dismutase mRNA in reproductive organs during the ovulatory process and the estrous cycle of the rat. Histochem. Cell Biol. 105, 1–6.
Expression of manganese superoxide dismutase mRNA in reproductive organs during the ovulatory process and the estrous cycle of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVagsw%3D%3D&md5=a2e6d6f20c3354d09aa57bc9247c7a58CAS | 8824900PubMed |

Paria, B. C., Ma, W., Tan, J., Raja, S., Das, S. K., Dey, S. K., and Hogan, B. L. (2001). Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc. Natl Acad. Sci. USA 98, 1047–1052.
Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1SmsLk%3D&md5=dae5cc858c5985266774ab240f803a46CAS |

Peng, S., Li, J., Miao, C., Jia, L., Ju, Z., Zhao, P., Li, J., Zhang, Y., Chen, Q., and Duan, E. (2008). Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation. Reproduction 135, 367–375.
Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVajur4%3D&md5=c2d0c21a0bd93d30a29c7da6790fb781CAS | 18299430PubMed |

Pumarola-Sune, T., Graus, F., Chen, Y. X., Cordon-Cardo, C., and Evans, R. L. (1986). A monoclonal antibody that induces T cell aggregation reacts with vascular endothelial cells and placental trophoblasts. J. Immunol. 137, 826–829.
| 1:CAS:528:DyaL28XkvFGkt7o%3D&md5=2ce597d5cba2168bd8f4b361e78f159cCAS | 2424985PubMed |

Rajapakse, S., Yamano, N., Ogiwara, K., Hirata, K., Takahashi, S., and Takahashi, T. (2007). Estrogen-dependent expression of the tissue kallikrein gene (Klk1) in the mouse uterus and its implications for endometrial tissue growth. Mol. Reprod. Dev. 74, 1053–1063.
Estrogen-dependent expression of the tissue kallikrein gene (Klk1) in the mouse uterus and its implications for endometrial tissue growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhu78%3D&md5=09c4e3c4c0614f01330550338da26818CAS | 17219431PubMed |

Reid, L. E., Brasnett, A. H., Gilbert, C. S., Porter, A. C., Gewert, D. R., Stark, G. R., and Kerr, I. M. (1989). A single DNA response element can confer inducibility by both alpha- and gamma-interferons. Proc. Natl Acad. Sci. USA 86, 840–844.
A single DNA response element can confer inducibility by both alpha- and gamma-interferons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVOlurk%3D&md5=33c67317996d19859a266397a739efa3CAS |

Rochwerger, L., and Buchwald, M. (1993). Stimulation of the cystic fibrosis transmembrane regulator expression by estrogen in vivo. Endocrinology 133, 921–930.
Stimulation of the cystic fibrosis transmembrane regulator expression by estrogen in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtFOksrg%3D&md5=90e6af3eb598c73e1f6f440ad93aded9CAS | 7688293PubMed |

Saitou, M., Barton, S. C., and Surani, M. A. (2002). A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300.
A molecular programme for the specification of germ cell fate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGmsLk%3D&md5=4b201fe630c5999d1445e2ff503a9880CAS | 12124616PubMed |

Sato, M., Kimura, T., Kurokawa, K., Fujita, Y., Abe, K., Masuhara, M., Yasunaga, T., Ryo, A., Yamamoto, M., and Nakano, T. (2002). Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94.
Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFejurY%3D&md5=0c9bc6c5e34175b4faad93869aaf24beCAS | 11900980PubMed |

Sibug, R. M., Helmerhorst, F. M., Tijssen, A. M., de Kloet, E. R., and de Koning, J. (2002). Gonadotrophin stimulation reduces VEGF(120) expression in the mouse uterus during the peri-implantation period. Hum. Reprod. 17, 1643–1648.
Gonadotrophin stimulation reduces VEGF(120) expression in the mouse uterus during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVejtbs%3D&md5=c4364301c2edda2550a8a079abb229eaCAS | 12042292PubMed |

Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Bazer, F. W. (2004). Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol. Reprod. 71, 2–10.
Progesterone and placental hormone actions on the uterus: insights from domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktL8%3D&md5=4b6b4ca72d673fe65090b477243582d6CAS | 14973264PubMed |

Tan, Y. F., Li, F. X., Piao, Y. S., Sun, X. Y., and Wang, Y. L. (2003). Global gene profiling analysis of mouse uterus during the oestrous cycle. Reproduction 126, 171–182.
Global gene profiling analysis of mouse uterus during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjsbY%3D&md5=8f6c4d58839873219b6c1d31770284aaCAS | 12887274PubMed |

Tanaka, S. S., and Matsui, Y. (2002). Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells. Mech. Dev. 119, S261–S267.
Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 14516695PubMed |

Tanaka, S. S., Yamaguchi, Y. L., Tsoi, B., Lickert, H., and Tam, P. P. (2005). IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev. Cell 9, 745–756.
IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptV2i&md5=00fdf999a1caeafad069605a4e414fbdCAS | 16326387PubMed |

Wang, D., Mann, J. R., and DuBois, R. N. (2004). WNT and cyclooxygenase-2 cross-talk accelerates adenoma growth. Cell Cycle 3, 1512–1515.
WNT and cyclooxygenase-2 cross-talk accelerates adenoma growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVersLY%3D&md5=20a8d1fada990daca668d0d8908bb9c9CAS | 15539957PubMed |

Xie, H., Tranguch, S., Jia, X., Zhang, H., Das, S. K., Dey, S. K., Kuo, C. J., and Wang, H. (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development 135, 717–727.
Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyhtr0%3D&md5=1956ff597a6f1ddbe5f1d139f47689d3CAS | 18199579PubMed |

Zhang, X., Christenson, L. K., and Nothnick, W. B. (2007). Regulation of MMP-9 expression and activity in the mouse uterus by estrogen. Mol. Reprod. Dev. 74, 321–331.
Regulation of MMP-9 expression and activity in the mouse uterus by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlClur4%3D&md5=3192b102bfabd150141bd82355ef8740CAS | 16967517PubMed |

Zhou, X. L., Lei, Z. M., and Rao, C. V. (1999). Treatment of human endometrial gland epithelial cells with chorionic gonadotropin/luteinizing hormone increases the expression of the cyclooxygenase-2 gene. J. Clin. Endocrinol. Metab. 84, 3364–3377.
Treatment of human endometrial gland epithelial cells with chorionic gonadotropin/luteinizing hormone increases the expression of the cyclooxygenase-2 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVGktL8%3D&md5=e7038fd8d12a01b4fd1898db404c5ca7CAS | 10487712PubMed |