Differential expression of microRNAs in porcine placentas on Days 30 and 90 of gestation
Lijie Su A , Shuhong Zhao A , Mengjin Zhu A and Mei Yu A BA Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong (Central China) Agricultural University, Wuhan, 430070, Hubei, PR China.
B Corresponding author. Email: yumei@mail.hzau.edu.cn
Reproduction, Fertility and Development 22(8) 1175-1182 https://doi.org/10.1071/RD10046
Submitted: 9 March 2010 Accepted: 7 April 2010 Published: 1 October 2010
Abstract
The porcine placenta is classified as a non-invasive epitheliochorial type. To meet the increasing demands for nutrients by the rapidly growing conceptus and/or fetus, the placental microscopic folds undergo significant morphological and biochemical changes during two periods critical for conceptus and/or fetus, namely Days 30–40 and after Day 90 of gestation. MicroRNAs (miRNAs) are a class of small non-coding RNAs that can modulate gene activity by inhibiting the translation or regulation of mRNA degradation. In the present study, we identified 17 differentially expressed miRNAs in porcine placenta on Days 30 and 90 of gestation using a locked nucleic acid (LNA) microRNA array. Stem–loop real-time reverse transcription–polymerase chain reaction confirmed the differential expression of eight selected miRNAs (miR-24, miR-125b, miR-92b, miR-106a, miR-17, let-7i, miR-27a and miR-20). Analysis of targets and the pathways in which these miRNAs are involved revealed that the differentially expressed miRNAs target many genes that are important in various processes, including cell growth, trophoblast differentiation, angiogenesis and formation and maintenance of adherens junctions. The results of the present study suggest potential roles for these differentially expressed miRNAs in porcine placental growth and function.
Additional keywords: epitheliochorial placenta, microarray, miRNAs, pig, target gene.
Acknowledgements
This research was supported by the National High Science and Technology Foundation of China ‘863’ (2007AA10Z148), National Natural Science Foundation of China (30771537), the Program for New Century Excellent Talents in University (NCET-08–0784) and Excellent Youth Foundation of Hubei Scientific Committee (2008CDB106). The authors thank Dr Quanyong Zhou, Yi Li and Xue Bai for sample collection and preparation.
Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kim, J. , Cho, I. S. , Hong, J. S. , Choi, Y. K. , Kim, H. , and Lee, Y. S. (2008). Identification and characterization of new microRNAs from pig. Mamm. Genome 19, 570–580.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pope, W. F. , and First, N. L. (1985). Factors affecting the survival of pig embryos. Theriogenology 23, 91–105.
| Crossref | GoogleScholarGoogle Scholar |
Roy, H. , Bhardwaj, S. , and Ylä-Herttuala, S. (2006). Biology of vascular endothelial growth factors. FEBS Lett. 580, 2879–2887.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sengupta, S. , Nie, J. , Wagner, R. J. , Yang, C. , Stewart, R. , and Thomson, J. A. (2009). MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27, 1524–1528.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Takahashi, Y. , Takahashi, M. , Carpino, N. , Jou, S. T. , Chao, J. R. , Tanaka, S. , Shigeyoshi, Y. , Parganas, E. , and Ihle, J. N. (2008). Leukemia inhibitory factor regulates trophoblast giant cell differentiation via janus kinase 1-signal transducer and activator of transcription 3-suppressor of cytokine signaling 3 pathway. Mol. Endocrinol. 22, 1673–1681.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tan, P. K. , Downey, T. J. , Spitznagel, E. L., Jr , Xu, P. , Fu, D. , Dimitrov, D. S. , Lempicki, R. A. , Raaka, B. M. , and Cam, M. C. (2003). Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31, 5676–5684.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vallet, J. L. , and Freking, B. A. (2007). Differences in placental structure during gestation associated with large and small pig fetuses. J. Anim. Sci. 85, 3267–3275.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vonnahme, K. A. , Wilson, M. E. , and Ford, S. P. (2001). Relationship between placental vascular endothelial growth factor expression and placental/endometrial vascularity in the pig. Biol. Reprod. 64, 1821–1825.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wernersson, R. , Schierup, M. H. , Jorgensen, F. G. , Yang, H. , and Bolund, L. (2005). Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6, 70.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wigmore, P. M. C. , and Strickland, N. C. (1985). Placental growth in the pig. Anat. Embryol. (Berl.) 173, 263–268.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ye, W. , Lv, Q. , Wong, C. K. , Li, G. , Yang, B. B. , and Zhang, Y. (2008). The effect of central loops in miRNA : MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One 3, e1719.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zerlin, M. , Julius, M. A. , and Kitajewski, J. (2008). Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11, 63–69.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhang, X. , Gaspard, J. P. , and Chung, D. C. (2001). Regulation of vascularendothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61, 6050–6054.
| PubMed |
Zhou, Q. Y. , Fang, M. D. , Huang, T. H. , Li, C. C. , Yu, M. , and Zhao, S. H. (2009). Detection of differentially expressed genes between Erhualian and Large White placentas on Day 75 and 90 of gestation. BMC Genomics 10, 337.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhu, X. M. , Han, T. , Sargent, I. L. , Yin, G. W. , and Yao, Y. Q. (2009). Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am. J. Obstet. Gynecol. 200, 661.e1–661.e7.
| Crossref | GoogleScholarGoogle Scholar |