Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality

H. Bertelsmann A D , S. Keppler B , M. Höltershinken C , H. Bollwein C , D. Behne A , D. Alber A , G. Bukalis A , A. Kyriakopoulos A and H. Sieme B
+ Author Affiliations
- Author Affiliations

A Helmholtz-Zentrum Berlin für Materialien und Energie, Department of Elemental Analytics, Hahn-Meitner Platz 1, 14109 Berlin, Germany.

B University of Veterinary Medicine Hannover Foundation, Clinic for Horses, Unit for Reproductive Medicine of Clinics, Bünteweg 15, 30559 Hannover, Germany.

C University of Veterinary Medicine Hannover Foundation, Clinic for Cattle, Bischofsholer Damm 15, 30173 Hannover, Germany.

D Corresponding author. Email: bertelsmann@helmholtz-berlin.de

Reproduction, Fertility and Development 22(5) 886-891 https://doi.org/10.1071/RD10032
Submitted: 23 February 2010  Accepted: 22 March 2010   Published: 22 April 2010

Abstract

The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion–1) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = –0.42, respectively; P ≤ 0.05), and the selenium concentration in spermatozoa (nmol g–1) was correlated with PRC (r = 0.40, P < 0.03). The results of the present study show that the determination of an adequate selenium status for the male equine reproduction requires the analysis of selenium in spermatozoa. Furthermore, selenium is associated with improved sperm quality and fertility in the stallion.

Additional keywords: glutathione peroxidase, male fertility.


References

Behne, D. , and Kyriakopoulos, A. (2001). Mammalian selenium-containing proteins. Annu. Rev. Nutr. 21, 453–473.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Leisen E., Heimberg P., and Höltershinken M. (2005). Supply with minerals of cattle has to be tested even on ecological farms. In ‘Ende der Nische. Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau’. (Eds J. Hess and G. Rahmann.) pp. 379–380. (Kassel University Press: Kassel.)

Liang, H. , Ran, Q. , Jang, Y. C. , Holstein, D. , Lechleiter, J. , McDonald-Marsh, T. , Musatov, A. , Song, W. , Van Remmen, H. , and Richardson, A. (2009). Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic. Biol. Med. 47, 312–320.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Oliva, R. (2006). Protamines and male infertility. Hum. Reprod. Update 12, 417–435.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Paglia, D. E. , and Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169.
PubMed |  CAS |

Petrunkina, A. M. , and Harrisson, R. A. (2010). Systematic mis-estimation of cell subpopulations by flow cytometry: a mathematical analysis. Theriogenology 73, 839–847.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Petrunkina, A. M. , Waberski, D. , Bollwein, H. , and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Pfeifer, H. , Conrad, M. , Roethlein, D. , Kyriakopoulos, A. , Brielmeier, M. , Bornkamm, G. W. , and Behne, D. (2001). Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J. 15, 1236–1238.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Renko, K. , Werner, M. , Renner-Müller, I. , Cooper, T. G. , Yeung, C. H. , Hollenbach, B. , Scharpf, M. , Köhrle, J. , Schomburg, L. , and Schweizer, U. (2008). Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem. J. 409, 741–749.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schneider, M. , Forster, H. , Boersma, A. , Seiler, A. , and Wehnes, H. , et al. (2009). Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 23, 3233–3242.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Seiler, A. , Schneider, M. , Förster, H. , Roth, S. , and Wirth, E. K. , et al. (2008). Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sławeta, R. , Laskowska, T. , and Szymańska, E. (1988). Lipid peroxides, spermatozoa quality and activity of glutathione peroxidase in bull semen. Acta Physiol. Pol. 39, 207–214.
PubMed |

Stradaioli, G. , Rubei, M. , Zamparini, M. , Tubaro, F. , Valentini, S. , Degl’Innocenti, S. , and Monaci, M. (2006). Enzymatic evaluation of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in equine spermatozoa. Anim. Reprod. Sci. 94, 29–31.
Crossref | GoogleScholarGoogle Scholar |

Stradaioli, G. , Sylla, L. , Monaci, M. , and And Maiorino, M. (2009). Phospholipid hydroperoxide glutathione peroxidase in bull spermatozoa provides a unique marker in the quest for semen quality analysis. Theriogenology 72, 91–98.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thomas, C. A. , Garner, D. L. , Dejarnette, J. M. , and Marshall, C. E. (1997). Fluorometric assessments of acrosomal integrity and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 56, 991–998.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tramer, F. , Micali, F. , Sandri, G. , Bertoni, A. , Lenzi, A. , Gandini, L. , and Panfili, E. (2002). Enzymatic and immunochemical evaluation of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in testes and epididymal spermatozoa of rats of different ages. Int. J. Androl. 25, 72–83.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ursini, F. , Heim, S. , Kiess, M. , Maiorino, M. , Roveri, A. , Wissing, J. , and Flohe, L. (1999). Dual function of the selenoprotein PHGPx during sperm maturation. Science 285, 1393–1396.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |