Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats

Shilpa Pathak A , Madhurima Saxena A , Ryan D'Souza A and N. H. Balasinor A B
+ Author Affiliations
- Author Affiliations

A Division of Neuroendocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Road, Parel, Mumbai 400 012, India.

B Corresponding author. Email: balasinorn@nirrh.res.in

Reproduction, Fertility and Development 22(6) 939-948 https://doi.org/10.1071/RD09154
Submitted: 1 July 2009  Accepted: 20 January 2010   Published: 25 May 2010

Abstract

Igf2, an imprinted gene that is paternally expressed in embryos, encodes an embryonic growth factor. An important regulator of Igf2 expression is methylation of the H19 differentially methylated region (DMR). A significant association has been observed between sperm methylation status at the H19 DMR and post-implantation loss. In addition, tamoxifen treatment has been shown to increase post-implantation loss and reduce DNA methylation at the H19 DMR in rat spermatozoa. Because this DMR is a primary DMR transmitting epigenetic imprint information from the gametes to the embryo, the aim of the present study was to determine the imprinting status of H19 DMR in post-implantation normal and resorbed embryos (F1) and to compare it with the H19 DMR in the spermatozoa of the respective sires. Analysis of the H19 DMR revealed methylation errors in resorbed embryo that were also observed in their sires' spermatozoa in the control and tamoxifen-treated groups. Expression analysis of the reciprocally imprinted genes Igf2 and H19 showed significant downregulation of Igf2 protein without any effect on H19 transcript levels in the resorbed embryos. The results indicate an association between disrupted imprinting status at the H19 DMR in resorbed embryos and the spermatozoa from their respective sires regardless of treatment, implying a common mechanism of resorption. The results demonstrate transmission of methylation errors at the Igf2H19 locus through the paternal germline to the subsequent generation, emphasising the role of paternal factors during embryogenesis.

Additional keywords: DNA methylation, resorption, tamoxifen.


Acknowledgements

The study (NIRRH/MS/41/2008) was supported by the Indian Council of Medical Research, New Delhi, India, under ‘Genomics’. The authors thank Dr A. Maitra, Mr C. Saravanan and Ms U. Nanda for technical assistance with DNA sequencing. The authors also acknowledge the assistance for animal experimentation of Mr H. G. Pawar, Mr S. Mandavkar and Mr D. Shelar. The financial assistance provided by the Council of Scientific and Industrial Research (CSIR), New Delhi, to Ms Shilpa Pathak for carrying out her doctoral study is sincerely acknowledged.


References

Apostolidou, S. , Abu-Amero, S. , O'Donoghue, K. , Frost, J. , and Olafsdottir, O. , et al. (2007). Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J. Mol. Med. 85, 379–387.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Baker, J. , Liu, J. P. , Robertson, J. R. , and Efstratiadis, A. (1993). Role of insulin-like growth factors in early embryonic and postnatal growth. Cell 75, 73–82.
PubMed |

Balasinor, N. , Gill-Sharma, M. K. , Parte, P. , D'Souza, S. , Kedia, N. , and Juneja, H. S. (2002). Effect of paternal administration of an antiestrogen, tamoxifen on embryo development in rats. Mol. Cell. Endocrinol. 190, 159–166.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bell, A. C. , and Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bliek, J. , Terhal, P. , Boggard, M. J. , Maas, S. , and Harmel, B. , et al. (2006). Hypomethylation of the H19 gene causes not only Silver-Russel syndrome (SRS) but also isolated asymmetry or SRS-like phenotype. Am. J. Hum. Genet. 78, 604–614.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bock, C. , Reither, S. , Mikeska, T. , Paulsen, M. , Walter, J. , and Lengauer, T. (2005). BiQ Analyzer: visualizaton and quality control for DNA methylation data from bisulphite sequencing. Bioinformatics 21, 4067–4068.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Buiting, K. , Gross, S. , Lich, C. , Gillessen-Kaesbach, G. , el-Maarri, O. , and Horsthemke, B. (2003). Epimutations in Prader–Willi and Angelman syndromes: a molecular study of 136 patients with an imprinted defect. Am. J. Hum. Genet. 72, 571–577.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Burns, J. L. , and Hassan, A. B. (2001). Cell survival and proliferation are modified by insulin-like growth factor 2 between days 9 and 10 of mouse gestation. Development 128, 3819–3830.
PubMed |

Cai, X. , and Cullen, B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Davis, T. L. , Yang, G. J. , McCarrey, J. , and Bartolomei, M. S. (2002). The H19 methylation imprint is erased and reestablished differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9, 2885–2894.
Crossref | GoogleScholarGoogle Scholar |

DeChiara, T. M. , Robertson, E. J. , and Efstradiatis, A. (1991). Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Drewell, R. A. , Brenton, J. D. , Ainscough, J. F. , Barton, S. C. , Hilton, K. J. , Arney, K. L. , Dandolo, L. , and Surani, M. A. (2000). Deletion of a silencer element disrupts H19 imprinting independently of a DNA methylation epigenetic switch. Development 127, 3419–3428.
PubMed |

Foulstone, E. , Prince, S. , Zaccheo, O. , Harper, J. , and Hassan, A. B. , et al. (2005). Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J. Pathol. 205, 145–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fowden, A. L. , Sibley, C. , Reik, W. , and Constancia, M. (2006). Imprinted genes, placental development and fetal growth. Horm. Res. 65, 50–58.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gicquel, C. , Rossignol, S. , Cabrol, S. , Houang, M. , and Steunou, V. , et al. (2005). Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russel syndrome. Nat. Genet. 37, 1003–1007.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hao, Y. , Crenshaw, T. , Moulton, T. , Newcomb, E. , and Tyco, B. (1993). Tumor-supressor activity of H19 RNA. Nature 365, 764–767.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kagami, M. , Nagai, T. , Fukami, M. , Yamazawa, K. , and Ogata, T. (2007). Silver Russel syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG/MEST. J. Assist. Reprod. Genet. 24, 131–136.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kedia, N. , Gill-Sharma, M. K. , Parte, P. , Juneja, H. S. , and Balasinor, N. (2004). Effect of paternal tamoxifen on the expression of insulin-like growth factor 2 and insulin-like growth factor type 1 receptor in the post-implantation rat embryos. Mol. Reprod. Dev. 69, 22–30.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kobayashi, H. , Sato, A. , Otsu, E. , Hiura, H. , and Tomatsu, C. , et al. (2007). Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet. 16, 2542–2551.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kobayashi, H. , Hiura, H. , John, R. M. , Sato, A. , Otsu, E. , Kobayashi, N. , Suzuki, R. , and Suzuki, F. , et al. (2009). DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 17, 1582–1591.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lefebvre, L. , Vivillel, S. , Barton, S. C. , Ishino, F. , Keverne, E. B. , and Surani, A. M. (1998). Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genet. 20, 163–169.
Crossref | GoogleScholarGoogle Scholar |

Leighton, P. A. , Ingram, R. S. , Eggenschwiler, J. , Efstratiadis, A. , and Tilghman, S. M. (1995). Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Livak, K. J. , and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marques, C. J. , Costa, P. , Vaz, F. , Carvalho, F. , and Fernandes, S. , et al. (2008). Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol. Hum. Reprod. 14, 67–74.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Murphy, S. K. , Zuang, H. , Wen, Y. , Spillman, M. A. , and Whitaker, R. S. , et al. (2006). Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol. Cancer Res. 4, 283–292.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ohlsson, R. , Nyström, A. , Pfeifer-Ohlsson, S. , Töhönen, V. , and Hedborg, F. , et al. (1993). IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat. Genet. 4, 94–97.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Overall, M. , Bakker, M. , Spencer, J. , Parker, N. , Smith, P. , and Dziadek, M. (1997). Genomic imprinting in the rat: linkage of Igf2 and H19 genes and opposite parental allele-specific expression during embryogenesis. Genomics 45, 416–420.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pathak, S. , Kedia-Mokashi, N. , Saxena, M. , D'Souza, R. , and Maitra, A. , et al. (2009). Effect of tamoxifen treatment on global and insulin like growth factor 2–H19 locus specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil. Steril. 91, 2253–2263.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pedone, P. V. , Cosma, M. P. , Ungaro, P. , Colantuoni, V. , and Bruni, C. B. , et al. (1994). Parental imprinting of rat insulin-like growth factor II gene promoters is coordinately regulated. J. Biol. Chem. 269, 23 970–23 975.
PubMed |

Sasaki, H. , Ferguson-Smith, A. C. , Shum, A. S. W. , Barton, S. , and Surani, A. M. (1995). Temporal abd spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development 121, 4195–4202.
PubMed |

Schmidt, J. V. , Levrose, J. M. , and Tilghman, S. M. (1999). Enhancer competition between H19 and Igf2 does not mediate their imprinting. Proc. Natl Acad. Sci. USA 96, 9733–9738.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smits, G. , Mungall, A. J. , Griffiths-Jones, S. , Smith, P. , and Beuryl, D. , et al. (2008). Conservation of the H19 noncoding RNA and H19–IGF2 imprinting mechanism in therians. Nat. Genet. 40, 971–976.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sparago, A. , Russo, S. , Cerrato, F. , Ferraiuolo, S. , and Castorina, P. , et al. (2007). Mechanism causing imprinting defects in familial Beckwith-Wiedmann syndrome with Wilms' tumor. Hum. Mol. Genet. 16, 254–264.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thorvaldsen, J. L. , Duran, K. L. , and Bartolomei, M. S. (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tremblay, K. D. , Uuran, K. L. , and Bartolomei, M. S. (1997). A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17, 4322–4329.
PubMed |

Vincze, T. , Posfai, J. , and Roberts, R. J. (2003). NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res. 31, 3688–3691.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weksberg, R. , Shuman, C. , and Smith, A. C. (2005). Beckwith-Wiedemann syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 137, 12–23.


Zhu, B. , Huang, X. , Chen, J. , Lu, Y. , Chen, Y. , and Zhao, J. (2006). Methylation changes of (H19) gene in sperms of X-irradiated mouse and maintenance in offspring. Biochem. Biophys. Res. Commun. 340, 83–89.
Crossref | GoogleScholarGoogle Scholar | PubMed |