Treatment of ovine oocytes with caffeine increases the accessibility of DNase I to the donor chromatin and reduces apoptosis in somatic cell nuclear transfer embryos
Inchul Choi A and Keith H. S. Campbell A BA Animal Development and Biotechnology Group, Division of Animal Sciences, School of Biosciences, The University of Nottingham, Sutton-Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
B Corresponding author. Email: keith.campbell@nottingham.ac.uk
Reproduction, Fertility and Development 22(6) 1000-1014 https://doi.org/10.1071/RD09144
Submitted: 16 June 2009 Accepted: 29 January 2001 Published: 1 July 2010
Abstract
Caffeine treatment of ovine oocytes increases the activity of maturation-promoting factor (MPF) and mitogen-activated protein kinases (MAPKs) and, in somatic cell nuclear transfer (SCNT) embryos, increases the frequency of nuclear envelope breakdown (NEBD) and premature chromosome condensation (PCC). At the blastocyst stage, caffeine-treated SCNT embryos have increased cell numbers. One explanation for this is that NEBD and PCC release chromatin-bound somatic factors, allowing greater access of oocyte factors involved in DNA synthesis and nuclear reprogramming to donor chromatin. This could advance DNA replication and cleavage in the first cell cycle, resulting in increased cell numbers. Alternatively, increased MAPK activity may affect localisation of heat shock proteins (HSPs) and reduce apoptosis. To investigate these possibilities, we investigated chromatin accessibility, the timing of DNA synthesis and first cleavage, the localisation of HSP27 during early development and the frequency of apoptotic nuclei at the blastocyst stage. Compared with control SCNT (non-caffeine treatment), caffeine treatment (10 mM caffeine for 6 h prior to activation) increased the accessibility of DNase I to donor chromatin (P < 0.05 at 1.5 h post activation (h.p.a.)), advanced DNA synthesis (43.5% v. 67.6%, respectively; P < 0.01 at 6 h.p.a.) and first cleavage (27.3% v. 40.5% at 20 h.p.a., respectively) and increased nuclear localisation of HSP27. Although development to the blastocyst stage was not affected, caffeine increased total cell numbers (98.5 v. 76.6; P < 0.05) and reduced the frequency of apoptotic nuclei (11.27% v. 20.3%; P < 0.05) compared with control SCNT group.
Additional keyword: nuclear reprogramming.
Alberio, R. , Brero, A. , Motlik, J. , Cremer, T. , Wolf, E. , and Zakhartchenko, V. (2001). Remodeling of donor nuclei, DNA-synthesis, and ploidy of bovine cumulus cell nuclear transfer embryos: effect of activation protocol. Mol. Reprod. Dev. 59, 371–379.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Arrigo, A. P. , Suhan, J. P. , and Welch, W. J. (1988). Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol. Cell. Biol. 8, 5059–5071.
| PubMed | CAS |
Beere, H. M. (2005). Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J. Clin. Invest. 115, 2633–2639.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bos-Mikich, A. , Mattos, A. L. , and Ferrari, A. N. (2001). Early cleavage of human embryos: an effective method for predicting successful IVF/ICSI outcome. Hum. Reprod. 16, 2658–2661.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Brison, D. R. , and Schultz, R. M. (1997). Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol. Reprod. 56, 1088–1096.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Brison, D. R. , and Schultz, R. M. (1998). Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biol. Reprod. 59, 136–144.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bruey, J. M. , Ducasse, C. , Bonniaud, P. , Ravagnan, L. , and Susin, S. A. , et al. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645–652.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Campbell, K. H. (2002). A background to nuclear transfer and its applications in agriculture and human therapeutic medicine. J. Anat. 200, 267–275.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Campbell, K. H. , and Alberio, R. (2003). Reprogramming the genome: role of the cell cycle. Reprod. Suppl. 61, 477–494.
| PubMed | CAS |
Campbell, K. H. , Ritchie, W. A. , and Wilmut, I. (1993). Nuclear–cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol. Reprod. 49, 933–942.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Campbell, K. H. , Loi, P. , Cappai, P. , and Wilmut, I. (1994). Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S-phase of enucleated activated oocytes. Biol. Reprod. 50, 1385–1393.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Choi, I. , Lee, J. H. , and Campbell, K. H. (2006). Effect of treatment of ovine oocytes with caffeine on gene expression in nuclear transfer embryos. Reprod. Fertil. Dev. 18, 122–123.
| Crossref | GoogleScholarGoogle Scholar |
Choi, J. Y. , Kim, C. I. , Park, C. K. , Yang, B. K. , and Cheong, H. T. (2004). Effect of activation time on the nuclear remodeling and in vitro development of nuclear transfer embryos derived from bovine somatic cells. Mol. Reprod. Dev. 69, 289–295.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Christians, E. S. , Zhou, Q. , Renard, J. , and Benjamin, I. J. (2003). Heat shock proteins in mammalian development. Semin. Cell Dev. Biol. 14, 283–290.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Collas, P. , and Robl, J. M. (1991). Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol. Reprod. 45, 455–465.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Colman, A. , and Kind, A. (2000). Therapeutic cloning: concepts and practicalities. Trends Biotechnol. 18, 192–196.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Comizzoli, P. , Marquant-Le Guienne, B. , Heyman, Y. , and Renard, J. P. (2000). Onset of the first S-phase is determined by a paternal effect during the G1-phase in bovine zygotes. Biol. Reprod. 62, 1677–1684.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Concannon, C. G. , Gorman, A. M. , and Samali, A. (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61–70.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Du, F. , Sung, L. Y. , Tian, X. C. , and Yang, X. (2002). Differential cytoplast requirement for embryonic and somatic cell nuclear transfer in cattle. Mol. Reprod. Dev. 63, 183–191.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Fenwick, J. , Platteau, P. , Murdoch, A. P. , and Herbert, M. (2002). Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod. 17, 407–412.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Freshney, N. W. , Rawlinson, L. , Guesdon, F. , Jones, E. , Cowley, S. , Hsuan, J. , and Saklatvala, J. (1994). Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Geum, D. , Son, G. H. , and Kim, K. (2002). Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J. Biol. Chem. 277, 19 913–19 921.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Guay, J. , Lambert, H. , Gingras-Breton, G. , Lavoie, J. N. , Huot, J. , and Landry, J. (1997). Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J. Cell Sci. 110, 357–368.
| PubMed | CAS |
Hayes, O. , Ramos, B. , Rodriguez, L. L. , Aguilar, A. , Badia, T. , and Castro, F. O. (2005). Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim. Reprod. Sci. 87, 181–192.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huot, J. , Lambert, H. , Lavoie, J. N. , Guimond, A. , Houle, F. , and Landry, J. (1995). Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur. J. Biochem. 227, 416–427.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Iwamoto, M. , Onishi, A. , Fuchimoto, D. , Somfai, T. , and Suzuki, S. , et al. (2005). Effects of caffeine treatment on aged porcine oocytes: parthenogenetic activation ability, chromosome condensation and development to the blastocyst stage after somatic cell nuclear transfer. Zygote 13, 335–345.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kampinga, H. H. , Hageman, J. , Vos, M. J. , Kubota, H. , Tanguay, R. M. , Bruford, E. A. , Cheetham, M. E. , Chen, B. , and Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kawahara, M. , Wakai, T. , Yamanaka, K. , Kobayashi, J. , Sugimura, S. , Shimizu, T. , Matsumoto, H. , Kim, J. H. , Sasada, H. , and Sato, E. (2005). Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer. Reproduction 130, 351–357.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Kikuchi, K. , Naito, K. , Noguchi, J. , Shimada, A. , Kaneko, H. , Yamashita, M. , Aoki, F. , Tojo, H. , and Toyoda, Y. (2000). Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol. Reprod. 63, 715–722.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kim, M. , Geum, D. , Khang, I. , Park, Y. M. , Kang, B. M. , Lee, K. A. , and Kim, K. (2002). Expression pattern of HSP25 in mouse preimplantation embryo: heat shock responses during oocyte maturation. Mol. Reprod. Dev. 61, 3–13.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kobayashi, T. , Kato, Y. , and Tsunoda, Y. (2004). Effect of the timing of the first cleavage on the developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. Theriogenology 62, 854–860.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kostenko, S. , and Moens, U. (2009). Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell. Mol. Life Sci. 66, 3289–3307.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kubisch, H. M. , and Johnson, K. M. (2007). The effects of blastomere biopsy and oxygen tension on bovine embryo development, rate of apoptosis and interferon-tau secretion. Reprod. Domest. Anim. 42, 509–515.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Landry, J. , Lambert, H. , Zhou, M. , Lavoie, J. N. , Hickey, E. , Weber, L. A. , and Anderson, C. W. (1992). Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J. Biol. Chem. 267, 794–803.
| PubMed | CAS |
Lavoie, J. N. , Gingras-Breton, G. , Tanguay, R. M. , and Landry, J. (1993a). Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J. Biol. Chem. 268, 3420–3429.
| PubMed | CAS |
Lavoie, J. N. , Hickey, E. , Weber, L. A. , and Landry, J. (1993b). Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268, 24 210–24 214.
| PubMed | CAS |
Lavoie, J. N. , Lambert, H. , Hickey, E. , Weber, L. A. , and Landry, J. (1995). Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol. Cell. Biol. 15, 505–516.
| PubMed | CAS |
Lee, J. H. , and Campbell, K. H. (2006). Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol. Reprod. 74, 691–698.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lee, J. H. , and Campbell, K. H. (2008). Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer. Cloning Stem Cells 10, 381–390.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Liu, L. , and Keefe, D. L. (2000). Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol. Reprod. 62, 1828–1834.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Loktionova, S. A. , Ilyinskaya, O. P. , Gabai, V. L. , and Kabakov, A. E. (1996). Distinct effects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endothelial cells. FEBS Lett. 392, 100–104.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lonergan, P. , Khatir, H. , Piumi, F. , Rieger, D. , Humblot, P. , and Boland, M. P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–167.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ludwig, S. , Engel, K. , Hoffmeyer, A. , Sithanandam, G. , Neufeld, B. , Palm, D. , Gaestel, M. , and Rapp, U. R. (1996). 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol. Cell. Biol. 16, 6687–6697.
| PubMed | CAS |
Martínez-Balbás, M. A. , Dey, A. , Rabindran, S. K. , Ozato, K. , and Wu, C. (1995). Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
McKiernan, S. H. , and Bavister, B. D. (1994). Timing of development is a critical parameter for predicting successful embryogenesis. Hum. Reprod. 9, 2123–2129.
| PubMed | CAS |
Mitalipov, S. M. , Zhou, Q. , Byrne, J. A. , Ji, W. Z. , Norgren, R. B. , and Wolf, D. P. (2007). Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum. Reprod. 22, 2232–2242.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Niemann, H. , and Kues, W. A. (2000). Transgenic livestock: premises and promises. Anim. Reprod. Sci. 60–61, 277–293.
| Crossref | GoogleScholarGoogle Scholar |
Park, E. S. , Hwang, W. S. , Jang, G. , Cho, J. K. , Kang, S. K. , Lee, B. C. , Han, J. Y. , and Lim, J. M. (2004). Incidence of apoptosis in clone embryos and improved development by the treatment of donor somatic cells with putative apoptosis inhibitors. Mol. Reprod. Dev. 68, 65–71.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pfister-Genskow, M. , Myers, C. , Childs, L. A. , Lacson, J. C. , and Patterson, T. , et al. (2005). Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod. 72, 546–555.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Smythe, C. , and Newport, J. W. (1992). Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68, 787–797.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Steinmann, K. E. , Belinsky, G. S. , Lee, D. , and Schlegel, R. (1991). Chemically induced premature mitosis: differential response in rodent and human cells and the relationship to cyclin B synthesis and p34cdc2/cyclin B complex formation. Proc. Natl Acad. Sci. USA 88, 6843–6847.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Stokoe, D. , Engel, K. , Campbell, D. G. , Cohen, P. , and Gaestel, M. (1992). Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 313, 307–313.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sung, L. Y. , Shen, P. C. , Jeong, B. S. , Xu, J. , and Chang, C. C. , et al. (2007). Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer. Biol. Reprod. 76, 232–240.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tani, T. , Kato, Y. , and Tsunoda, Y. (2001). Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol. Reprod. 64, 324–330.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tesarik, J. , and Kopecny, V. (1989). Nucleic acid synthesis and development of human male pronucleus. J. Reprod. Fertil. 86, 549–558.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
van Soom, A. , Ysebaert, M. T. , and de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Vandaele, L. , Mateusen, B. , Maes, D. , de Kruif, A. , and Van Soom, A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology 65, 1691–1703.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wakayama, T. , Perry, A. C. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ward, F. , Rizos, D. , Corridan, D. , Quinn, K. , Boland, M. , and Lonergan, P. (2001). Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Mol. Reprod. Dev. 60, 47–55.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wilmut, I. , and Paterson, L. (2003). Somatic cell nuclear transfer. Oncol. Res. 13, 303–307.
| PubMed |