Replication asynchrony and differential condensation of X chromosomes in female platypus (Ornithorhynchus anatinus)
Kristen K. K. Ho A , Janine E. Deakin B , Megan L. Wright A , Jennifer A. Marshall Graves B and Frank Grützner A CA School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia.
B Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
C Corresponding author. Email: frank.grutzner@adelaide.edu.au
Reproduction, Fertility and Development 21(8) 952-963 https://doi.org/10.1071/RD09099
Submitted: 22 April 2009 Accepted: 15 September 2009 Published: 30 October 2009
Abstract
A common theme in the evolution of sex chromosomes is the massive loss of genes on the sex-specific chromosome (Y or W), leading to a gene imbalance between males (XY) and females (XX) in a male heterogametic species, or between ZZ and ZW in a female heterogametic species. Different mechanisms have evolved to compensate for this difference in dosage of X-borne genes between sexes. In therian mammals, one of the X chromosomes is inactivated, whereas bird dosage compensation is partial and gene-specific. In therian mammals, hallmarks of the inactive X are monoallelic gene expression, late DNA replication and chromatin condensation. Platypuses have five pairs of X chromosomes in females and five X and five Y chromosomes in males. Gene expression analysis suggests a more bird-like partial and gene-specific dosage compensation mechanism. We investigated replication timing and chromosome condensation of three of the five X chromosomes in female platypus. Our data suggest asynchronous replication of X-specific regions on X1, X3 and X5 but show significantly different condensation between homologues for X3 only, and not for X1 or X5. We discuss these results in relation to recent gene expression analysis of X-linked genes, which together give us insights into possible mechanisms of dosage compensation in platypus.
Additional keywords: chromosome condensation, dosage compensation, gene expression, X chromosome inactivation.
Acknowledgements
We thank Aaron Casey, Dan Kortschak and David Adelson for valuable discussion of the results and advice on the statistical analyses. This work is supported by the Australian Research Council (DP0449984 to F.G.). F.G. is an ARC Australian Research Fellow.
Adler, D. A. , Rugarli, E. I. , Lingenfelter, P. A. , Tsuchiya, K. , Poslinski, D. , Liggitt, H. D. , Chapman, V. M. , Elliott, R. W. , Ballabio, A. , and Disteche, C. M. (1997). Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc. Natl Acad. Sci. USA 94, 9244–9248.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Arnold, A. P. , Itoh, Y. , and Melamed, E. (2008). A bird’s-eye view of sex chromosome dosage compensation. Annu. Rev. Genomics Hum. Genet. 9, 109–127.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Belmont, A. S. , Bignone, F. , and Ts’O, P. O. (1986). The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts. Exp. Cell Res. 165, 165–179.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bininda-Emonds, O. R. P. , Cardillo, M. , Jones, K. E. , MacPhee, R. D. E. , Beck, R. M. D. , Grenyer, R. , Price, S. A. , Vos, R. A. , Gittleman, J. L. , and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507–512.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Bisoni, L. , Batlle-Morera, L. , Bird, A. P. , Suzuki, M. , and McQueen, H. A. (2005). Female-specific hyperacetylation of histone H4 in the chicken Z chromosome. Chromosome Res. 13, 205–214.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Boggs, B. A. , and Chinault, A. C. (1994). Analysis of replication timing properties of human X-chromosomal loci by fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 91, 6083–6087.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Carrel, L. , and Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Cedar, H. , and Bergman, Y. (2008). Choreography of Ig allelic exclusion. Curr. Opin. Immunol. 20, 308–317.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Cooper, D. W. (1971). Directed genetic change model for X-chromosome inactivation in eutherian mammals. Nature 230, 292–294.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Cooper, D. W. , Johnston, P. G. , and Graves, J. A. M. (1993). X-inactivation in marsupials and monotremes. Semin. Dev. Biol. 4, 117–128.
| Crossref | GoogleScholarGoogle Scholar |
Daish, T. , and Grützner, F. (2009). Location, location, location! Monotremes provide unique insights into the evolution of sex-chromosome silencing in mammals. DNA Cell Biol. 28, 91–100.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Davidow, L. S. , Breen, M. , Duke, S. E. , Samollow, P. B. , McCarrey, J. R. , and Lee, J. T. (2007). The search for a marsupial XIC reveals a break with vertebrate synteny. Chromosome Res. 15, 137–146.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Deakin, J. E. , Hore, T. A. , Koina, E. , and Graves, J. A. M. (2008b). The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 4, e1000140.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Deakin, J. E. , Koina, E. , Waters, P. D. , Doherty, R. , and Patel, V. S. , et al. (2008a). Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosome Res. 16, 1159–1175.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
De Bonis, M. L. , Cerase, A. , Matarazzo, M. R. , Ferraro, M. , Strazzullo, M. , Hansen, R. S. , Chiurazzi, P. , Neri, G. , and D’Esposito, M. (2006). Maintenance of X- and Y-inactivation of the pseudoautosomal (PAR2) gene SPRY3 is independent from DNA methylation and associated to multiple layers of epigenetic modifications. Hum. Mol. Genet. 15, 1123–1132.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Delbridge, M. L. , Patel, H. R. , Waters, P. D. , McMillan, D. A. , and Graves, J. A. M. (2009). Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28. Genome Res. ,
| Crossref | GoogleScholarGoogle Scholar | PubMed |
D’Esposito, M. , Ciccodicola, A. , Gianfrancesco, F. , Esposito, T. , Flagiello, L. , Mazzarella, R. , Schlessinger, D. , and D’Urso, M. (1996). A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation. Nat. Genet. 13, 227–229.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Dünzinger, U. , Nanda, I. , Schmid, M. , Haaf, T. , and Zechner, U. (2005). Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously. Trends Genet. 21, 488–492.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Duret, L. , Chureau, C. , Samain, S. , Weissenbach, J. , and Avner, P. (2006). The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312, 1653–1655.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Elisaphenko, E. A. , Kolesnikov, N. N. , Shevchenko, A. I. , Rogozin, I. B. , Nesterova, T. B. , Brockdorff, N. , and Zakian, S. M. (2008). A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3, e2521.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ellegren, H. , Hultin-Rosenberg, L. , Brunstrom, B. , Dencker, L. , Kultima, K. , and Scholz, B. (2007). Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5, 40.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Goldmit, M. , and Bergman, Y. (2004). Monoallelic gene expression: a repertoire of recurrent themes. Immunol. Rev. 200, 197–214.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Graves, J. A. M. (1967). DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Exp. Cell Res. 46, 37–57.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Graves, J. A. M. (1995). The origin and function of the mammalian Y chromosome and Y-borne genes – an evolving understanding. Bioessays 17, 311–320.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Graves, J. A. M. , and Gartler, S. M. (1986). Mammalian X-chromosome inactivation: testing the hypothesis of transcriptional control. Somat. Cell Mol. Genet. 12, 275–280.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Gribnau, J. , Luikenhuis, S. , Hochedlinger, K. , Monkhorst, K. , and Jaenisch, R. (2005). X-chromosome choice occurs independently of asynchronous replication timing. J. Cell Biol. 168, 365–373.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Grützner, F. , Rens, W. , Tsend-Ayush, E. , El-Mogharbel, N. , O’Brien, P. C. , Jones, R. C. , Ferguson-Smith, M. A. , and Graves, J. A. M. (2004). In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Grützner, F. , Ashley, T. , Rowell, D. M. , and Graves, J. A. M. (2006). How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115, 75–88.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Guo, L. , Hu-Li, J. , and Paul, W. E. (2005). Probabilistic regulation in TH2 cells accounts for monoallelic expression of IL-4 and IL-13. Immunity 23, 89–99.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Heard, E. (2005). Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev. 15, 482–489.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hore, T. A. , Koina, E. , and Graves, J. A. M. (2007). The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res. 15, 147–161.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hornecker, J. L. , Samollow, P. B. , Robinson, E. S. , Vandeberg, J. L. , and McCarrey, J. R. (2007). Meiotic sex-chromosome inactivation in the marsupial Monodelphis domestica. Genesis 45, 696–708.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Itoh, Y. , Melamed, E. , Yang, X. , Kampf, L. , and Wang, S. , et al. (2007). Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Johnston, C. M. , Lovell, F. L. , Leongamornlert, D. A. , Stranger, B. E. , Dermitzakis, E. T. , and Ross, M. T. (2008). Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet. 4, e9.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Johnston, P. G. , and Robinson, E. S. (1987). X-chromosome inactivation in female embryos of a marsupial mouse (Antechinus stuartii). Chromosoma 95, 419–423.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kaslow, D. C. , and Migeon, B. R. (1987). DNA methylation stabilizes X-chromosome inactivation in eutherians but not in marsupials: evidence for multi-step maintenance of mammalian X dosage compensation. Proc. Natl Acad. Sci. USA 84, 6210–6214.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kirby, P. J. , Greaves, I. K. , Koina, E. , Waters, P. D. , and Graves, J. A. M. (2007). Core-SINE blocks comprise a large fraction of monotreme genomes: implications for vertebrate chromosome evolution. Chromosome Res. 15, 975–984.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Koina, E. , Chaumeil, J. , Greaves, I. K. , Tremethick, D. J. , and Graves, J. A. M. (2009). Specific patterns of histone marks accompany X-chromosome inactivation in a marsupial. Chromosome Res. 17, 115–126.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kuroda, Y. , Arai, N. , Arita, M. , Teranishi, M. , Hori, T. , Harata, M. , and Mizuno, S. (2001). Absence of Z-chromosome inactivation for five genes in male chickens. Chromosome Res. 9, 457–468.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kuroiwa, A. , Yokomine, T. , Sasaki, H. , Tsudzuki, M. , Tanaka, K. , Namikawa, T. , and Matsuda, Y. (2002). Biallelic expression of Z-linked genes in male chickens. Cytogenet. Genome Res. 99, 310–314.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Loebel, D. A. , and Johnston, P. G. (1996). Methylation analysis of a marsupial X-linked CpG island by bisulfite genomic sequencing. Genome Res. 6, 114–123.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Mank, J. E. , and Ellegren, H. (2009). All dosage compensation is local: gene-by-gene regulation of sex-biased expression on the chicken Z chromosome. Heredity 102, 312–320.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
McKay, L. M. , Wrigley, J. M. , and Graves, J. A. M. (1987). Evolution of mammalian X-chromosome inactivation: sex chromatin in monotremes and marsupials. Aust. J. Biol. Sci. 40, 397–404.
| PubMed | CAS |
Mlynarczyk-Evans, S. , Royce-Tolland, M. , Alexander, M. K. , Andersen, A. A. , Kalantry, S. , Gribnau, J. , and Panning, B. (2006). X chromosomes alternate between two states prior to random X inactivation. PLoS Biol. 4, e159.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Monkhorst, K. , Jonkers, I. , Rentmeester, E. , Grosveld, F. , and Gribnau, J. (2008). X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132, 410–421.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Mostoslavsky, R. , Singh, N. , Tenzen, T. , Goldmit, M. , and Gabay, C. , et al. (2001). Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Murtagh, C. E. (1977). A unique cytogenetic system in monotremes. Chromosoma 65, 37–57.
| Crossref | GoogleScholarGoogle Scholar |
Nguyen, D. K. , and Disteche, C. M. (2006). Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ohlsson, R. , Paldi, A. , and Graves, J. A. M. (2001). Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet. 17, 136–141.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Rego, A. , Sinclair, P. B. , Tao, W. , Kireev, I. , and Belmont, A. S. (2008). The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J. Cell Sci. 121, 1119–1127.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rens, W. , Grützner, F. , O’Brien, P. C. , Fairclough, H. , Graves, J. A. M. , and Ferguson-Smith, M. A. (2004). Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex-chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16 257–16 261.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rens, W. , O’Brien, P. C. M. , Grützner, F. , Clarke, O. , and Graphodatskaya, D. , et al. (2007). The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 8, R243.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Richardson, B. J. , Czuppon, A. B. , and Sharman, G. B. (1971). Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nat. New Biol. 230, 154–155.
| PubMed | CAS |
Robinson, E. S. , Samollow, P. B. , VandeBerg, J. L. , and Johnston, P. G. (1994). X-chromosome replication patterns in adult, newborn and prenatal opossums. Reprod. Fertil. Dev. 6, 533–540.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Selig, S. , Okumura, K. , Ward, D. C. , and Cedar, H. (1992). Delineation of DNA replication time-zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225.
| PubMed | CAS |
Shevchenko, A. I. , Zakharova, I. S. , Elisaphenko, E. A. , Kolesnikov, N. N. , and Whitehead, S. , et al. (2007). Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials. Chromosome Res. 15, 127–136.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Simon, I. , Tenzen, T. , Reubinoff, B. E. , Hillman, D. , McCarrey, J. R. , and Cedar, H. (1999). Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Singh, N. , Ebrahimi, F. A. , Gimelbrant, A. A. , Ensminger, A. W. , Tackett, M. R. , Qi, P. , Gribnau, J. , and Chess, A. (2003). Coordination of the random asynchronous replication of autosomal loci. Nat. Genet. 33, 339–341.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Skok, J. A. , Brown, K. E. , Azuara, V. , Caparros, M.-L. , and Baxter, J. , et al. (2001). Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Teranishi, M. , Shimada, Y. , Hori, T. , Nakabayashi, O. , and Kikuchi, T. , et al. (2001). Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus. Chromosome Res. 9, 147–165.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tsend-Ayush, E. , Dodge, N. , Mohr, J. , Casey, A. , Himmelbauer, H. , Kremitzki, C. L. , Schatzkamer, K. , Graves, T. , Warren, W. C. , and Grützner, F. (2009). Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution. Chromosoma 118, 53–69.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Veyrunes, F. , Waters, P. D. , Miethke, P. , Rens, W. , and McMillan, D. , et al. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Warren, W. C. , and Grützner, F. (2009). The enigma of the platypus genome. Aust. J. Zool. 57, 157–165.
| Crossref | GoogleScholarGoogle Scholar |
Warren, W. C. , Hillier, L. W. , Graves, J. A. M. , Birney, E. , and Ponting, C. P. , et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wilson, N. D. , Ross, L. J. , Close, J. , Mott, R. , Crow, T. J. , and Volpi, E. V. (2007). Replication profile of PCDH11X and PCDH11Y, a gene pair located in the non-pseudoautosomal homologous region Xq21.3/Yp11.2. Chromosome Res. 15, 485–498.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wrigley, J. M. , and Graves, J. A. M. (1984). Two monotreme cell lines, derived from female platypuses (Ornithorhynchus anatinus; Monotremata, Mammalia). In Vitro 20, 321–328.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Wrigley, J. M. , and Graves, J. A. M. (1988). Sex chromosome homology and incomplete, tissue-specific X-inactivation suggest that monotremes represent an intermediate stage of mammalian sex chromosome evolution. J. Hered. 79, 115–118.
| PubMed | CAS |