Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Eggs, embryos and the evolution of imprinting: insights from the platypus genome

Marilyn B. Renfree A B E , Anthony T. Papenfuss A C , Geoff Shaw A B and Andrew J. Pask A B D
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Kangaroo Genomics.

B Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C Bioinformatics Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Vic. 3052, Australia.

D Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.

E Corresponding author. Email: m.renfree@unimelb.edu.au

Reproduction, Fertility and Development 21(8) 935-942 https://doi.org/10.1071/RD09092
Submitted: 11 April 2009  Accepted: 28 August 2009   Published: 30 October 2009

Abstract

Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting.

Additional keywords: eutherians, genomic imprinting, host defence hypothesis, mammals, marsupials, monotremes, repeats.


Acknowledgements

Our research was supported by the ARC Centre of Excellence in Kangaroo Genomics; A.T.P. was supported by an NHMRC Fellowship; A.J.P. was supported by an NHMRC R.D.Wright Fellowship; and M.B.R. by an ARC Federation Fellowship.


References

Ager, E. , Suzuki, S. , Pask, A. , Shaw, G. , Ishino, F. , and Renfree, M. B. (2007). Insulin is imprinted in the placenta of the marsupial, Macropus eugenii. Dev. Biol. 309, 317–328.
Crossref | GoogleScholarGoogle Scholar | PubMed | Griffiths M. E. (1978). ‘The Biology of the Monotremes.’ (Academic Press: New York, London, Cambridge.)

Hatada, I. , and Mukai, T. (1995). Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat. Genet. 11, 204–206.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Herzing, L. B. , Cook, E. H. , and Ledbetter, D. H. (2002). Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11-q13 duplications. Hum. Mol. Genet. 11, 1707–1718.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kagitani, F. , Kuroiwa, Y. , Wakana, S. , Shiroishi, T. , Miyoshi, N. , Kobayashi, S. , Nishida, M. , Kohda, T. , Kaneko-Ishino, T. , and Ishino, F. (1997). Peg5/Neuronatin is an imprinted gene located on sub-distal chromosome 2 in the mouse. Nucleic Acids Res. 25, 3428–3432.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kaneko-Ishino, T. , Kuroiwa, Y. , Miyoshi, N. , Kohda, T. , Suzuki, R. , Yokoyama, M. , Viville, S. , Barton, S. C. , Ishino, F. , and Surani, M. A. (1995). Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat. Genet. 11, 52–59.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Keverne, E. B. (2001). Genomic imprinting, maternal care and brain evolution. Horm. Behav. 40, 146–155.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Keverne, E. B. , and Curley, J. P. (2008). Epigenetics, brain evolution and behaviour. Front. Neuroendocrinol. 29, 398–412.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Killian, J. K. , Byrd, J. C. , Jirtle, J. V. , Munday, B. L. , Stoskopf, M. K. , MacDonald, R. G. , and Jirtle, R. L. (2000). M6P/IGF2R imprinting evolution in mammals. Mol. Cell 5, 707–716.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Killian, J. K. , Nolan, C. M. , Stewart, N. , Munday, B. L. , Andersen, N. A. , Nicol, S. , and Jirtle, R. L. (2001). Monotreme IGF2 expression and ancestral origin of genomic imprinting. J. Exp. Zool. 291, 205–212.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leff, S. E. , Brannan, C. I. , Reed, M. L. , Ozçelik, T. , Francke, U. , Copeland, N. G. , and Jenkins, N. A. (1992). Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat. Genet. 2, 259–264.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McDonald, J. F. , Matzke, M. A. , and Matzke, A. J. (2005). Host defences to transposable elements and the evolution of genomic imprinting. Cytogenet. Genome Res. 110, 242–249.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Miyoshi, N. , Wagatsuma, H. , Wakana, S. , Shiroishi, T. , Nomura, M. , Aisaka, K. , Kohda, T. , Surani, M. A. , Kaneko-Ishino, T. , and Ishino, F. (2000). Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5, 211–220.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moore, T. , and Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49.
PubMed |

Moore, G. E. , Abu-Amero, S. N. , Bell, G. , Wakeling, E. L. , Kingsnorth, A. , Stanier, P. , Jauniaux, E. , and Bennett, S. T. (2001). Evidence that insulin is imprinted in the human yolk sac. Diabetes 50, 199–203.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Müller, B. , Hedrich, K. , Kock, N. , Dragasevic, N. , and Svetel, M. , et al. (2002). Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. Am. J. Hum. Genet. 71, 1303–1311.
Crossref | GoogleScholarGoogle Scholar | PubMed |

O’Neill, M. J. , Ingram, R. S. , Vrana, P. B. , and Tilghman, S. M. (2000). Allelic expression of IGF2 in marsupials and birds. Dev. Genes Evol. 210, 18–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ono, R. , Nakamura, K. , Inoue, K. , Naruse, M. , and Usami, T. , et al. (2006). Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38, 101–106.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pask, A. J. , Papenfuss, A. T. , Ager, E. I. , McColl, K. A. , Speed, T. P. , and Renfree, M. B. (2009). Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol. 10, R1.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rapkins, R. W. , Hore, T. , Smithwick, M. , Ager, E. , and Pask, A. J. , et al. (2006). Recent assembly of an imprinted domain from non-imprinted components. PLoS Genetics 2, e182.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renfree, M. B. (1973). The composition of fetal fluids of the marsupial, Macropus eugenii. Dev. Biol. 33, 62–79.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renfree, M. B. , Ager, E. A. , Shaw, G. , and Pask, A. J. (2008). Genomic imprinting in marsupial placentation. Reproduction 136, 523–531.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renfree, M. B. , Hore, T. A. , Shaw, G. , Graves, J. A. M. , and Pask, A. J. (2009). Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10, 241–262.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smits, G. , Mungall, A. J. , Griffiths-Jones, S. , Smith, P. , and Beury, D. , et al. (2008). Conservation of the H19 non-coding RNA and H19–IGF2 imprinting mechanism in therians. Nat. Genet. 40, 971–976.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suzuki, S. , Renfree, M. B. , Pask, A. J. , Shaw, G. , Kobayashi, S. , Kohada, T. , Kaneko-Ishino, T. , and Ishino, F. (2005). Genomic imprinting of IGF2, P57 KIP2 and PEG1/MEST in a marsupial, the tammar wallaby. Mech. Dev. 122, 213–222.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suzuki, S. , Ono, R. , Narita, T. , Pask, A. J. , and Shaw, G. , et al. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genetics 3, e55.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Swaney, W. T. , Curley, J. P. , Champagne, F. A. , and Keverne, E. B. (2007). Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. Proc. Natl Acad. Sci. USA 104, 6084–6089.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takada, S. , Tevendale, M. , Baker, J. , Georgiades, P. , Campbell, E. , Freeman, T. , Johnson, M. H. , Paulsen, M. , and Ferguson-Smith, A. C. (2000). Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr. Biol. 10, 1135–1138.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tsai, C. E. , Lin, S. P. , Ito, M. , Takagi, N. , Takada, S. , and Ferguson-Smith, A. C. (2002). Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr. Biol. 12, 1221–1226.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Warren, W. C. , Hillier, L. D. , Graves, J. A. M. , Birney, E. , and Ponting, C. P. , et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weidman, J. R. , Dolinoy, D. C. , Maloney, K. A. , Cheng, J. F. , and Jirtle, R. L. (2006a). Imprinting of opossum Igf2r in the absence of differential methylation and air. Epigenetics 1, 49–54.
PubMed |

Weidman, J. R. , Maloney, K. A. , and Jirtle, R. L. (2006b). Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mamm. Genome 17, 157–167.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilkins, J. F. , and Haig, D. (2003). What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4, 359–368.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wylie, A. A. , Murphy, S. K. , Orton, T. C. , and Jirtle, R. L. (2000). Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 10, 1711–1718.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Youngson, N. A. , Kocialkowski, S. , Peel, N. , and Ferguson-Smith, A. C. (2005). A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol. 61, 481–490.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, Y. , Shields, T. , Crenshaw, T. , Hao, Y. , Moulton, T. , and Tycko, B. (1993). Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am. J. Hum. Genet. 53, 113–124.
PubMed |