Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference

Karen Goossens A D , Dawit Tesfaye B , Franca Rings B , Karl Schellander B , Michael Hölker B , Mario Van Poucke A , Alex Van Zeveren A , Isabel Lemahieu C , Ann Van Soom C and Luc J. Peelman A
+ Author Affiliations
- Author Affiliations

A Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.

B Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.

C Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

D Corresponding author. Email: karen.goossens@ugent.be

Reproduction, Fertility and Development 22(2) 395-404 https://doi.org/10.1071/RD09080
Submitted: 31 March 2009  Accepted: 13 July 2009   Published: 4 January 2010

Abstract

The expression of the cytoskeleton protein Keratin 18 (KRT18) starts at the onset of bovine blastocyst formation. KRT18 is solely expressed in the trophectoderm and can therefore be used as a marker for trophectodermal differentiation. In the present study, the expression of KRT18 was suppressed by RNA interference to probe its functional importance in bovine blastocyst formation. Microinjection of KRT18 double-stranded RNA into the cytoplasm of zygotes resulted in reduced KRT18 mRNA (76% reduction) and protein expression at the blastocyst stage and a lower developmental competence (41% reduction in the percentage of blastocyst formation) compared with non-injected and phosphate-buffered saline (PBS)-injected controls. KRT18 downregulation was associated with reduced mRNA expression of KRT8, the binding partner of KRT18, but had no effect on the expression of KRT19, CDH1 and DSP, other genes involved in intermediate filament and cytoskeleton formation. The results of the present study demonstrated that KRT18 knockdown in preimplantation embryos results in reduced blastocyst formation, but no further morphological aberrations were observed with regard to the biological function of KRT18. These observations could be due to the function of KRT18 being replaced by that of another gene, the surviving blastocysts expressing the minimum level of KRT18 required for normal blastocyst development or the possibility that further aberrations may occur later in development.


Acknowledgements

The authors thank Petra Van Damme and Dominique Vander Donckt en Linda Impe for their excellent technical assistance, Ruben Van Gansbeke for his help with the layout of the figures and sample collection. This work was supported by Ghent University, with additional research funds provided by the Department of Nutrition, Genetics and Ethology (Ghent University).


References

Adjaye, J. , Herwig, R. , Brink, T. C. , Herrmann, D. , Greber, B. , Sudheer, S. , Groth, D. , Carnwath, J. W. , Lehrach, H. , and Niemann, H. (2007). Conserved molecular portraits of bovine and human blastocysts as a consequence of the transition from maternal to embryonic control of gene expression. Physiol. Genomics 31, 315–327.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Lane E. B. (1993). Keratins. In ‘Connectine Tissue and Its Heritable disorders’. (Eds P. M. Royce and B. Steinmann.) pp. 237–247. (Wiley-Liss: New York.)

Larue, L. , Ohsugi, M. , Hirchenhain, J. , and Kemler, R. (1994). E-Cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lu, H. , Hesse, M. , Peters, B. , and Magin, T. M. (2005). Type II keratins precede type I keratins during early embryonic development. Eur. J. Cell Biol. 84, 709–718.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Magin, T. M. , Schroder, R. , Leitgeb, S. , Wanninger, F. , Zatloukal, K. , Grund, C. , and Melton, D. W. (1998). Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8 positive aggregates. J. Cell Biol. 140, 1441–1451.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

McManus, M. T. , and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Miller, D. J. , Eckert, J. J. , Lazzari, G. , Duranthon-Richoux, V. , Sreenan, J. , Morris, D. , Galli, C. , Renard, J. P. , and Fleming, T. P. (2003). Tight junction messenger RNA expression levels in bovine embryos are dependent upon the ability to compact and in vitro culture methods. Biol. Reprod. 68, 1394–1402.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nganvongpanit, K. , Müller, H. , Rings, F. , Gilles, M. , Jennen, D. , Hölker, M. , Tholen, E. , Schellander, K. , and Tesfaye, D. (2006a). Targeted suppression of E-cadherin gene expression in bovine preimplantation embryo by RNA interference technology using double-stranded RNA. Mol. Reprod. Dev. 73, 153–163.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nganvongpanit, K. , Müller, H. , Rings, F. , Hoelker, M. , Jennen, D. , Tholen, E. , Havlicek, V. , Besenfelder, U. , Schellander, K. , and Tesfaye, D. (2006b). Selective degradation of maternal and embryonic transcripts in in vitro produced bovine oocytes and embryos using sequence specific double-stranded RNA. Reproduction 131, 861–874.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Oshima, R. G. , Baribault, H. , and Caulín, C. (1996). Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev. 15, 445–471.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Paradis, F. , Vigneault, C. , Robert, C. , and Sirard, M. A. (2005). RNA interference as a tool to study gene function in bovine oocytes. Mol. Reprod. Dev. 70, 111–121.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Pasdar, M. , and Nelson, W. J. (1988). Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell–cell contact. J. Cell Biol. 106, 687–695.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Pasdar, M. , Krzeminski, K. A. , and Nelson, W. J. (1991). Regulation of desmosome assembly in MDCK epithelial cells: coordination of membrane core and cytoplasmic plaque domain assembly at the plasma membrane. J. Cell Biol. 113, 645–655.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rozen, S. , and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
PubMed |  CAS |

Schellander, K. , Hoelker, M. , and Tesfaye, D. (2007). Selective degradation of transcripts in mammalian oocytes and embryos. Theriogenology 68(Suppl. 1), S107–S115.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stanton, J. A. , Macgregor, A. B. , and Green, D. P. (2003). Gene expression in the mouse preimplantation embryo. Reproduction 125, 457–468.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stevenson, B. R. , and Keon, B. H. (1998). The tight junction: morphology to molecules. Annu. Rev. Cell Dev. Biol. 14, 89–109.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Svoboda, P. (2004). Long dsRNA and silent genes strike back: RNAi in mouse oocytes and early embryos. Cytogenet. Genome Res. 105, 422–434.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Svoboda, P. , Stein, P. , and Schultz, R. M. (2001). RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099–1104.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tesfaye, D. , Lonergan, P. , Hoelker, M. , Rings, F. , Nganvongpanit, K. , Havlicek, V. , Besenfelder, U. , Jennen, D. , Tholen, E. , and Schellander, K. (2007). Suppression of connexin 43 and E-cadherin transcripts in in vitro derived bovine embryos following culture in vitro or in vivo in the homologous bovine oviduct. Mol. Reprod. Dev. 74, 978–988.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vandaele, L. , Mateusen, B. , Maes, D. , de Kruif, A. , and Van Soom, A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology 65, 1691–1703.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watson, A. J. , and Barcroft, L. C. (2001). Regulation of blastocyst formation. Front. Biosci. 6, d708–d730.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Watson, A. J. , Natale, D. R. , and Barcroft, L. C. (2004). Molecular regulation of blastocyst formation. Anim. Reprod. Sci. 82–83, 583–592.
Crossref | GoogleScholarGoogle Scholar |

Wianny, F. , and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse. Nat. Cell Biol. 2, 70–75.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yeaman, C. , Grindstaff, K. K. , and Nelson, W. J. (1999). New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98.
PubMed |  CAS |

Zhao, Z. , Cao, Y. , Li, M. , and Meng, A. (2001). Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |