Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice
Leanne J. McGrath A , Wendy V. Ingman A , Rebecca L. Robker A and Sarah A. Robertson A BA Discipline of Obstetrics and Gynaecology and Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia.
B Corresponding author. Email: sarah.robertson@adelaide.edu.au
Reproduction, Fertility and Development 21(4) 561-570 https://doi.org/10.1071/RD08294
Submitted: 15 December 2008 Accepted: 2 February 2009 Published: 7 April 2009
Abstract
Analysis of Tgfb1 null mutant mice has demonstrated that the cytokine transforming growth factor β1 (TGFB1) has essential non-redundant roles in fertility. The present study attempted to alleviate the infertility phenotype of Tgfb1 null mutant male mice by administration of exogenous TGFB1, either orally by colostrum feeding or subcutaneously by delivery of recombinant human latent TGFB1 (rhLTGFB1) via osmotic mini-pumps. Bovine colostrum and fresh unpasteurised bovine milk were found to be rich sources of TGFB1 and TGFB2; however, feeding Tgfb1 null mutant mice colostrum for 2 days failed to raise serum levels of TGFB1. Administration of rhLTGFB1 (~150 μg in total) over 14 days to Tgfb1 null mutant mice resulted in detectable TGFB1 in serum; however, mean levels remained 10-fold less than in Tgfb1 heterozygous mice. After 7 days and 14 days of rhLTGFB1 administration, serum testosterone, spontaneous non-contact erections and mating behaviour were assessed. Despite the increased serum TGFB1, administration of rhLTGFB1 to Tgfb1 null mutant mice failed to improve these fertility parameters. It is concluded that sustained restoration of circulating latent TGFB1 to levels approaching the normal physiological range does not rescue the infertility phenotype caused by TGFB1 deficiency. Reproductive function in male Tgfb1 null mutant mice may not respond to systemic TGFB1 supplementation due to a requirement for local sources of TGFB1 at the site of action in the reproductive tract, or perturbed development during the neonatal period or puberty such that adult reproductive function is permanently impaired.
Additional keywords: cytokine, male reproduction, mating behaviour.
Acknowledgement
This study was supported by a Discovery Grant from the Australian Research Council.
Alessi, M. C. , Bastelica, D. , Morange, P. , Berthet, B. , Leduc, I. , Verdier, M. , Geel, O. , and Juhan-Vague, I. (2000). Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49, 1374–1380.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ishizaka, S. , Kimoto, M. , Tsujii, T. , and Saito, S. (1994). Antibody production system modulated by oral administration of human milk and TGF-beta. Cell. Immunol. 159, 77–84.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ishizaka, S. , Kimoto, M. , Kanda, S. , and Saito, S. (1998). Augmentation of natural killer cell activity in mice by oral administration of transforming growth factor-beta. Immunology 95, 460–465.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Jin, Y. , Cox, D. A. , Knecht, R. , Raschdorf, F. , and Cerletti, N. (1991). Separation, purification, and sequence identification of TGF-beta 1 and TGF-beta 2 from bovine milk. J. Protein Chem. 10, 565–575.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kallapur, S. , Ormsby, I. , and Doetschman, T. (1999). Strain dependency of TGF beta1 function during embryogenesis. Mol. Reprod. Dev. 52, 341–349.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Knight, D. (2001). Epithelium–fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 79, 160–164.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kobayashi, S. , Yoshida, K. , Ward, J. M. , Letterio, J. J. , and Longenecker, G. , et al. (1999). Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse. J. Immunol. 163, 4013–4019.
| PubMed | CAS |
Kong, F. M. , Anscher, M. S. , Murase, T. , Abbott, B. D. , Iglehart, J. D. , and Jirtle, R. L. (1995). Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann. Surg. 222, 155–162.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kulkarni, A. B. , Huh, C. G. , Becker, D. , Geiser, A. , Lyght, M. , Flanders, K. C. , Roberts, A. B. , Sporn, M. B. , Ward, J. M. , and Karlsson, S. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lawrence, D. A. (1996). Transforming growth factor-beta: a general review. Eur. Cytokine Netw. 7, 363–374.
| CAS | PubMed |
Letterio, J. J. , Geiser, A. G. , Kulkarni, A. B. , Roche, N. S. , Sporn, M. B. , and Roberts, A. B. (1994). Maternal rescue of transforming growth factor-beta 1 null mice. Science 264, 1936–1938.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Letterio, J. J. , Geiser, A. G. , Kulkarni, A. B. , Dang, H. , Kong, L. , Nakabayashi, T. , Mackall, C. L. , Gress, R. E. , and Roberts, A. B. (1996). Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Longenecker, G. , Thyagarajan, T. , Nagineni, C. N. , Flanders, K. C. , and Factor, V. , et al. (2002). Endocrine expression of the active form of TGF-beta1 in the TGF-beta1 null mice fails to ameliorate lethal phenotype. Cytokine 18, 43–50.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Mao, J. H. , Saunier, E. F. , de Koning, J. P. , McKinnon, M. M. , Higgins, M. N. , Nicklas, K. , Yang, H. T. , Balmain, A. , and Akhurst, R. J. (2006). Genetic variants of Tgfb1 act as context-dependent modifiers of mouse skin tumour susceptibility. Proc. Natl. Acad. Sci. USA 103, 8125–8130.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
McGill, T. E. (1962). Sexual behaviour in three inbred strains of mice. Behaviour 19, 341–350.
| Crossref | GoogleScholarGoogle Scholar |
McKenna, I. M. , Ramakrishna, G. , Diwan, B. A. , Kang, Y. , Shiao, Y. H. , Wakefield, L. M. , Powell, D. A. , Anderson, L. M. , and Jakowlew, S. B. (2001). Heterozygous inactivation of TGF-beta1 increases the susceptibility to chemically induced mouse lung tumorigenesis independently of mutational activation of K-ras. Toxicol. Lett. 123, 151–158.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Okamoto, A. , Kawamura, T. , Kanbe, K. , Kanamaru, Y. , Ogawa, H. , Okumura, K. , and Nakao, A. (2005). Suppression of serum IgE response and systemic anaphylaxis in a food allergy model by orally administered high-dose TGF-beta. Int. Immunol. 17, 705–712.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Oz, H. S. , Ray, M. , Chen, T. S. , and McClain, C. J. (2004). Efficacy of a transforming growth factor beta 2-containing nutritional support formula in a murine model of inflammatory bowel disease. J. Am. Coll. Nutr. 23, 220–226.
| PubMed | CAS |
Pakkanen, R. (1998). Determination of transforming growth factor-beta 2 (TGF-beta 2) in bovine colostrum samples. J. Immunoassay 19, 23–37.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Quan, T. , He, T. , Voorhees, J. J. , and Fisher, G. J. (2001). Ultraviolet irradiation blocks cellular responses to transforming growth factor-beta by down-regulating its type-II receptor and inducing Smad7. J. Biol. Chem. 276, 26 349–26 356.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Robertson, S. A. , Ingman, W. V. , O’Leary, S. , Sharkey, D. J. , and Tremellen, K. P. (2002). Transforming growth factor beta – a mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 57, 109–128.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Ryder, M. I. , Saghizadeh, M. , Ding, Y. , Nguyen, N. , and Soskolne, A. (2002). Effects of tobacco smoke on the secretion of interleukin-1beta, tumour necrosis factor-alpha, and transforming growth factor-beta from peripheral blood mononuclear cells. Oral Microbiol. Immunol. 17, 331–336.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Saito, S. , Yoshida, M. , Ichijo, M. , Ishizaka, S. , and Tsujii, T. (1993). Transforming growth factor-beta (TGF-beta) in human milk. Clin. Exp. Immunol. 94, 220–224.
| PubMed | CAS |
Scott, L. , Kerr, A. , Haydock, D. , and Merrilees, M. (1997). Subendothelial proteoglycan synthesis and transforming growth factor beta distribution correlate with susceptibility to atherosclerosis. J. Vasc. Res. 34, 365–377.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Shull, M. M. , Ormsby, I. , Kier, A. B. , Pawlowski, S. , and Diebold, R. J. , et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693–699.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tremellen, K. P. , Seamark, R. F. , and Robertson, S. A. (1998). Seminal transforming growth factor beta1 stimulates granulocyte-macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol. Reprod. 58, 1217–1225.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wang, X. L. , Liu, S. X. , and Wilcken, D. E. (1997). Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovasc. Res. 34, 404–410.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Watanabe, Y. , Kinoshita, A. , Yamada, T. , Ohta, T. , Kishino, T. , Matsumoto, N. , Ishikawa, M. , Niikawa, N. , and Yoshiura, K. (2002). A catalogue of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signalling pathway. J. Hum. Genet. 47, 478–483.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wohlfahrt, J. G. , Kunzmann, S. , Menz, G. , Kneist, W. , Akdis, C. A. , Blaser, K. , and Schmidt-Weber, C. B. (2003). T cell phenotype in allergic asthma and atopic dermatitis. Int. Arch. Allergy Immunol. 131, 272–282.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |