Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice

Laura J. Parry A D , Lenka A. Vodstrcil A B , Anna Madden A , Stephanie H. Amir A , Katrina Baldwin A , Mary E. Wlodek B and Kevin R. Nicholas A C
+ Author Affiliations
- Author Affiliations

A Department of Zoology, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Department of Physiology, The University of Melbourne, Parkville, Vic. 3010, Australia.

C CRC for Innovative Dairy Products, Melbourne, Australia.

D Corresponding author. Email: ljparry@unimelb.edu.au

Reproduction, Fertility and Development 21(4) 549-560 https://doi.org/10.1071/RD08243
Submitted: 26 October 2008  Accepted: 26 January 2009   Published: 7 April 2009

Abstract

Pups born to mice with a targeted deletion of relaxin or its receptor (Rxfp1) die within 24 h postpartum. This has been attributed, in part, to abnormal mammary gland development in relaxin-mutant mice (Rln–/–). However, mammary development is normal in relaxin receptor-mutant (Rxfp1–/–) mice. The present study aimed to verify the mammary phenotypes in late pregnant and early lactating Rln–/– mice and to test the hypothesis that relaxin is involved in milk protein synthesis. Comparisons between late pregnant and early lactating wildtype (Rln+/+) and Rln–/– mice showed no differences in lobuloalveolar structure or ductal branching in the mammary gland. Mammary explants from Rln–/– mice also expressed β-casein and α-lactalbumin in response to lactogenic hormones at a similar level to Rln+/+ mice, implying normal milk protein synthesis. Pregnant Rln–/– mice infused with relaxin for 6 days gave birth to live pups without difficulty, and 96% of pups survived beyond 7 days. This is in contrast with the 100% pup mortality in saline-treated Rln–/– mice or 3-day relaxin-treated Rln–/– mice. Pups born to relaxin-treated Rln–/– dams weighed significantly less than Rln+/+ pups but had similar growth rates as their wildtype counterparts. In summary, relaxin is not critical for mammary gland development or β-casein and α-lactalbumin expression in late pregnant mice. In addition, Rln–/– dams did not need to be treated with relaxin postpartum for the pups to survive, suggesting that relaxin has no role in the maintenance of lactation in mice.

Additional keywords: fetal growth, milk proteins.


Acknowledgements

The authors are grateful to Sonia Mailer for her technical assistance in the tissue culture experiment, Bruce Abaloz for helping with the histology and Tania Long for assistance with breeding the mice, animal care and husbandry and for maintaining the colony of Rln–/– mice. The work was funded by an ARC Linkage International Grant to L.J.P. (LX045211). L.A.V. received an NHMRC Dora Lush Scholarship.


References

Bani, G. , and Bigazzi, M. (1984). Morphological changes induced in mouse mammary gland by porcine and human relaxin. Acta Anat. (Basel) 119, 149–154.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | McGuane J. T. (2007). The role of the peptide hormone in cardiac fibrosis. Ph.D. Thesis, University of Melbourne.

Min, G. , and Sherwood, O. D. (1996). Identification of specific relaxin-binding cells in the cervix, mammary glands, nipples, small intestine, and skin of pregnant pigs. Biol. Reprod. 55, 1243–1252.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Novak, J. , Parry, L. J. , Matthews, J. E. , Kerchner, L. J. , Indovina, K. , Hanley-Yanez, K. , Doty, K. D. , Debrah, D. O. , Shroff, S. G. , and Conrad, K. P. (2006). Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 20, 2352–2362.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Parry, L. J. , McGuane, J. T. , Gehring, H. M. , Kostic, I. G. , and Siebel, A. L. (2005). Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx–/–) mouse. Ann. N. Y. Acad. Sci. 1041, 91–103.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Quarrie, L. H. , Addey, C. V. P. , and Wilde, C. J. (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal and milk statis. J. Cell. Physiol. 168, 559–569.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Samuel, C. S. , Tian, H. , Zhao, L. , and Amento, E. P. (2003). Relaxin is a key mediator of prostate growth and male reproductive tract development. Lab. Invest. 83, 1055–1067.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Unemori, E. N. , Erikson, M. E. , Rocco, S. E. , Sutherland, K. M. , Parsell, D. A. , Mak, J. , and Grove, B. H. (1999). Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum. Reprod. 14, 800–806.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vilotte, J. L. , and Soulier, S. (1992). Isolation and characterization of the mouse alpha-lactalbumin-encoding gene: interspecies comparison, tissue- and stage-specific expression. Gene 119, 287–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vodstrcil, L. A. , Wlodek, M. E. , and Parry, L. J. (2007). Effects of uteroplacental restriction on the relaxin-family receptors, Lgr7 and Lgr8, in the uterus of late pregnant rats. Reprod. Fertil. Dev. 19, 530–538.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wahab, I. M. , and Anderson, R. R. (1989). Physiologic role of relaxin on mammary gland growth in rats. Proc. Soc. Exp. Biol. Med. 192, 285–289.
PubMed |  CAS |

Wakerley, J. B. , and Drewett, R. F. (1975). Pattern of sucking in the infant rat during spontaneous milk ejection. Physiol. Behav. 15, 277–281.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Warner, B. , Janssens, P. A. , and Nicholas, K. R. (1993). Prolactin-independent induction of α-lactalbumin gene expression in mammary gland explants from pregnant Balb/c mice. Biochem. Biophys. Res. Commun. 194, 987–991.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Winn, R. J. , Baker, M. D. , Merle, C. A. , and Sherwood, O. D. (1994). Individual and combined effects of relaxin, oestrogen, and progesterone in ovariectomized gilts. II. Effects on mammary development. Endocrinology 135, 1250–1255.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yoshimura, M. , and Oka, T. (1989). Isolation and structural analysis of the mouse beta-casein gene. Gene 78, 267–275.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zaleski, H. M. , Winn, R. J. , Jennings, R. L. , and Sherwood, O. D. (1996). Effects of relaxin on lactational performance in ovariectomized gilts. Biol. Reprod. 55, 671–675.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhao, L. , Roche, P. J. , Gunnersen, J. M. , Hammond, V. E. , Tregear, G. W. , Wintour, E. M. , and Beck, F. (1999). Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140, 445–453.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhao, L. , Samuel, C. S. , Tregear, G. W. , Beck, F. , and Wintour, E. M. (2000). Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63, 697–703.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |