Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Changes in human placental 5α-reductase isoenzyme expression with advancing gestation: effects of fetal sex and glucocorticoid exposure

Thi T. Vu A , Jonathan J. Hirst A B , Michael Stark A , Ian M. R. Wright A , Hannah K. Palliser A , Nicolette Hodyl A and Vicki L. Clifton A
+ Author Affiliations
- Author Affiliations

A Mothers and Babies Research Centre and School of Biomedical Sciences, John Hunter Hospital Campus, University of Newcastle, Callaghan, NSW 2308, Australia.

B Corresponding author. Email: jon.hirst@newcastle.edu.au

Reproduction, Fertility and Development 21(4) 599-607 https://doi.org/10.1071/RD08224
Submitted: 6 October 2008  Accepted: 16 February 2009   Published: 17 April 2009

Abstract

5α-Reduced steroids, including allopregnanolone, suppress neuronal activity and can have neuroprotective effects in the fetus. 5α-Reductases in the placenta may contribute precursors to brain allopregnanolone synthesis. Preterm birth and glucocorticoids, administered for fetal lung maturation or for maternal asthma, may influence reductase expression. The aims of the present study were to evaluate placental 5α-reductase isoform expression during late gestation and to examine fetal sex differences and the effects of glucocorticoid therapies on the expression of these enzymes. Expression of the two 5α-reductase isoenzymes was measured in placental samples, whereas cortisol concentrations were measured in cord blood, from two cohorts. The first cohort consisted of women who delivered preterm and received betamethasone treatment (n = 41); the second cohort consisted of women who delivered at term and were either healthy controls (n = 30) or asthmatics who had used glucocorticoids (n = 24). Placental expression of both isoenzymes increased with advancing gestation and there were marked sex differences in levels of 5α-reductase I (P < 0.05), but not of 5α-reductase II. The expression of both enzymes was positively correlated with cortisol levels (P < 0.05), but there was no effect of recent glucocorticoid exposure. These findings suggest that the preterm neonate may have lower developmental exposure to 5α-reduced steroids and may lack steroid-mediated neuroprotection depending on fetal sex.

Additional keywords: allopregnanolone, betamethasone, maternal asthma, placenta, preterm birth.


Acknowledgements

This work was supported by a Hunter Medical Research Institute grant, a National Health and Medical Research Council of Australia grant (ID NO. 455527) to J.J.H. and a National Health and Medical Research Council of Australia Fellowship to V.L.C.


References

Andersson, S. , and Russell, D. W. (1990). Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc. Natl Acad. Sci. USA 87, 3640–3644.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | McKendry A. A., Palliser H. K., Yates D. M., Sullivan R. K. P., Walker D. W., and Hirst J. J. (2008). Effect of betamethasone treatment on brain cell death and neurosteroidogenic pathways in a guinea pig model of placental insufficiency. Reprod. Sci. 15, 3A. [Abstract 49] doi:10.1177/19337191080150020101

Melcangi, R. C. , Magnaghi, V. , Cavarretta, I. , Martini, L. , and Piva, F. (1998). Age-induced decrease of glycoprotein po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience 85, 569–578.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Melcangi, R. C. , Garcia-Segura, L. M. , and Mensah-Nyagan, A. G. (2008). Neuroactive steroids: state of the art and new perspectives. Cell. Mol. Life Sci. 65, 777–797.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mentasti, P. , Gagliardi, F. , and Rigon, D. (1969). Contractibility of the human uterus and the hormonal situation. Studies on therapy with progesterone in pregnancy. Minerva Ginecol. 21, 685–687.
PubMed |  CAS |

Milewich, L. , Gant, N. F. , Schwarz, B. E. , Chen, G. T. , and MacDonald, P. C. (1979). 5 alpha-reductase activity in human placenta. Am. J. Obstet. Gynecol. 133, 611–617.
PubMed |  CAS |

Mortimer, K. J. , Harrison, T. W. , Tang, Y. , Wu, K. , Lewis, S. , Sahasranaman, S. , Hochhaus, G. , and Tattersfield, A. E. (2006). Plasma concentrations of inhaled corticosteroids in relation to airflow obstruction in asthma. Br. J. Clin. Pharmacol. 62, 412–419.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Murphy, V. E. , and Clifton, V. L. (2003). Alterations in human placental 11[beta]-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 24, 739–744.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Murphy, V. E. , Gibson, P. G. , Giles, W. B. , Zakar, T. , Smith, R. , Bisits, A. M. , Kessell, C. G. , and Clifton, V. L. (2003). Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med. 168, 1317–1323.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Murphy, V. E. , Gibson, P. , Talbot, P. I. , and Clifton, V. L. (2005). Severe asthma exacerbations during pregnancy. Obstet. Gynecol. 106, 1046–1054.
PubMed |

Murphy, V. E. , Smith, R. , Giles, W. B. , and Clifton, V. L. (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr. Rev. 27, 141–169.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Murphy, V. E. , Fittock, R. J. , Zarzycki, P. K. , Delahunty, M. M. , Smith, R. , and Clifton, V. L. (2007). Metabolism of synthetic steroids by the human placenta. Placenta 28, 39–46.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nguyen, P. N. , Billiards, S. S. , Walker, D. W. , and Hirst, J. J. (2003). Changes in 5α-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr. Res. 53, 956–964.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nguyen, P. N. , Yan, E. B. , Castillo-Melendez, M. , Walker, D. W. , and Hirst, J. J. (2004). Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J. Physiol. 560, 593–602.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nicol, M. B. , Hirst, J. J. , and Walker, D. W. (1998). Effect of pregnane steroids on electrocortical activity and somatosensory evoked potentials in fetal sheep. Neurosci. Lett. 253, 111–114.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nicol, M. B. , Hirst, J. J. , and Walker, D. W. (2001). Effect of finasteride on behavioural arousal and somatosensory evoked potentials in fetal sheep. Neurosci. Lett. 306, 13–16.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Paakki, P. , Kirkinen, P. , Helin, H. , Pelkonen, O. , Raunio, H. , and Pasanen, M. (2000). Antepartum glucocorticoid therapy suppresses human placental xenobiotic and steroid metabolizing enzymes. Placenta 21, 241–246.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Parker, C. R. , Atkinson, M. W. , Owen, J. , and Andrews, W. W. (1996). Dynamics of the fetal adrenal, cholesterol, and apolipoprotein B responses to antenatal betamethasone therapy. Am. J. Obstet. Gynecol. 174, 562–565.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Peterson, R. E. , Imperato-McGinley, J. , Gautier, T. , and Sturla, E. (1977). Male pseudohermaphroditism due to steroid 5-alpha-reductase deficiency. Am. J. Med. 62, 170–191.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Poletti, A. , Negri-Cesi, P. , Rabuffetti, M. , Colciago, A. , Celotti, F. , and Martini, L. (1998). Transient expression of the 5α-reductase type 2 isozyme in the rat brain in late fetal and early postnatal life. Endocrinology 139, 2171–2178.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Quinlivan, J. A. , Dunlop, S. A. , Newnham, J. P. , Evans, S. F. , and Beazley, L. D. (1999). Repeated, but not single, maternal administration of corticosteroids delays myelination in the brain of fetal sheep. Prenat. Neonatal Med. 4, 47–55.
CAS |

Russell, D. W. , and Wilson, J. D. (1994). Steroid 5α-reductase: Two genes/two enzymes. Annu. Rev. Biochem. 63, 25–61.
PubMed |  CAS |

Sheehan, P. M. , Rice, G. E. , Moses, E. K. , and Brennecke, S. P. (2005). 5β-Dihydroprogesterone and steroid 5β-reductase decrease in association with human parturition at term. Mol. Hum. Reprod. 11, 495–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tapanainen, J. , Huhtaniemi, I. , Koivisto, M. , Kujansuu, E. , Tuimala, R. , and Vihko, R. (1984). Hormonal changes during the perinatal period: FSH, prolactin and some steroid hormones in the cord blood and peripheral serum of preterm and fullterm female infants. J. Steroid Biochem. 20, 1153–1156.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thigpen, A. E. , Silver, R. I. , Guileyardo, J. M. , Casey, M. L. , McConnell, J. D. , and Russell, D. W. (1993). Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J. Clin. Invest. 92, 903–910.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Torres, J. M. , and Ortega, E. (2003). Differential regulation of steroid 5alpha-reductase isozymes expression by androgens in the adult rat brain. FASEB J. 17, 1428–1433.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Weisz, J. , and Ward, I. L. (1980). Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106, 306–316.
PubMed |  CAS |

Wolthers, O. D. , Honour, J. W. , and Path, F. R. C. (1999). Measures of hypothalamic–pituitary–adrenal function in patients with asthma treated with inhaled glucocorticoids: clinical and research implications. J. Asthma 36, 477–486.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yawno, T. , Yan, E. B. , Walker, D. W. , and Hirst, J. J. (2007). Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience 146, 1726–1733.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |