Gene expression profile of cumulus cells derived from cumulus–oocyte complexes matured either in vivo or in vitro
Dawit Tesfaye A , Nasser Ghanem A , Fiona Carter B , Trudee Fair B , Marc-André Sirard C , Michael Hoelker A , Karl Schellander A and Patrick Lonergan B DA Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
B School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
C Centre de Recherche en Biologie de la Reproduction, Université Laval, Département des Sciences Animales, Pav. Comtois, Laval, Sainte-Foy, Québec, Canada G1K 7P4.
D Corresponding author. Email: pat.lonergan@ucd.ie
Reproduction, Fertility and Development 21(3) 451-461 https://doi.org/10.1071/RD08190
Submitted: 2 September 2008 Accepted: 20 October 2008 Published: 4 March 2009
Abstract
Although it is well established that maturation conditions have a clear influence on oocyte developmental competence, it is not known whether this could be due to downstream effects of perturbation of the transcript profile of the oocyte’s adjacent cumulus cells. Therefore, the aim of the present study was to compare the transcript profiles of cumulus cells derived from cumulus–oocyte complexes (COCs) matured in vitro or in vivo. Using a previously validated combined synchronisation and superstimulation protocol, COCs were recovered from beef heifer ovaries just before the expected time of the LH surge and matured in vitro, while in vivo-matured COCs were recovered just before ovulation (20 h after the LH surge). A custom-made cDNA microarray containing 2278 granulosa/cumulus transcripts was used for target and dye-swap hybridisations. In all, 64 genes were differentially expressed between the two groups. Transcript abundance of key genes associated with cumulus expansion (TNFAIP6) and regulation of oocyte maturation (INHBA and FST) were upregulated in in vivo-derived cumulus cells. However, cumulus cells derived from IVM COCs were enriched with genes involved in response to stress (HSPA5 and HSP90AB1). Quantitative real-time polymerase chain reaction confirmed the array results for eight of 10 genes selected for validation. The data presented here reveal that differences in oocyte developmental capacity after maturation in vitro or in vivo are accompanied by distinct differences in transcript abundance of the surrounding cumulus cells.
Additional keywords: cumulus cells, oocyte maturation.
Acknowledgement
This work was supported by Science Foundation Ireland (the opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Science Foundation Ireland).
Aktas, H. , Leibfried-Rutledge, M. L. , and First, N. L. (2003). Meiotic state of bovine oocytes is regulated by interactions between cAMP, cumulus, and granulosa. Mol. Reprod. Dev. 65, 336–343.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lee, S. L. , Sadovsky, Y. , Swirnoff, A. H. , Polish, J. A. , Goda, P. , Gavrilina, G. , and Milbrandt, J. (1996). Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219–1221.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Leibfried-Rutledge, M. L. , Critser, E. S. , Eyestone, W. H. , Northey, D. L. , and First, N. L. (1987). Development potential of bovine oocytes matured in vitro or in vivo. Biol. Reprod. 36, 376–383.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lodde, V. , Modina, S. , Galbusera, C. , Franciosi, F. , and Luciano, A. M. (2007). Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol. Reprod. Dev. 74, 740–749.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lonergan, P. , Gutiérrez-Adán, A. , Rizos, D. , Pintado, B. , de la Fuente, J. , and Boland, M. P. (2003). Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 h after the preovulatory luteinizing hormone surge. Mol. Reprod. Dev. 66, 297–305.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Luciano, A. M. , Lodde, V. , Beretta, M. S. , Colleoni, S. , Lauria, A. , and Modina, S. (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 71, 389–397.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Maedomari, N. , Kikuchi, K. , Ozawa, M. , Noguchi, J. , Kaneko, H. , Ohnuma, K. , Nakai, M. , Shino, M. , Nagai, T. , and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Matzuk, M. M. , Burns, K. H. , Viveiros, M. M. , and Eppig, J. J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
McKenzie, L. J. , Pangas, S. A. , Carson, S. A. , Kovanci, E. , Cisneros, P. , Buster, J. E. , Amato, P. , and Matzuk, M. M. (2004). Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Nagyova, E. , Camaioni, A. , Prochazka, R. , Day, A. J. , and Salustri, A. (2008). Synthesis of tumor necrosis factor alpha-induced protein 6 in porcine preovulatory follicles: a study with a38 antibody. Biol. Reprod. 78, 903–909.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Patel, O. V. , Bettegowda, A. , Ireland, J. J. , Coussens, P. M. , Lonergan, P. , and Smith, G. W. (2007). Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes. Reproduction 133, 95–106.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Richards, J. S. , Russell, D. L. , Ochsner, S. , and Espey, L. L. (2002). Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu. Rev. Physiol. 64, 69–92.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rizos, D. , Lonergan, P. , Ward, F. , Duffy, P. , and Boland, M. P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Russell, D. L. , and Salustri, A. (2006). Extracellular matrix of the cumulus–oocyte complex. Semin. Reprod. Med. 24, 217–227.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sadatsuki, M. , Tsutsumi, O. , Yamada, R. , Muramatsu, M. , and Taketani, Y. (1993). Local regulatory effects of activin and follistatin on meiotic maturation of rat oocytes. Biochem. Biophys. Res. Commun. 196, 388–395.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Salustri, A. , Garlanda, C. , Hirsch, E. , De Acetis, M. , and Maccagno, A. , et al. (2004). PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 131, 1577–1586.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sayasith, K. , Brown, K. A. , Lussier, J. G. , Doré, M. , and Sirois, J. (2006). Characterization of bovine early growth response factor-1 and its gonadotropin-dependent regulation in ovarian follicles prior to ovulation. J. Mol. Endocrinol. 37, 239–250.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sayasith, K. , Doré, M. , and Sirois, J. (2007). Molecular characterization of tumor necrosis alpha-induced protein 6 and its human chorionic gonadotropin-dependent induction in theca and mural granulosa cells of equine preovulatory follicles. Reproduction 133, 135–145.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Schramm, R. D. , Paprocki, A. M. , and VandeVoort, C. A. (2003). Causes of developmental failure of in-vitro matured rhesus monkey oocytes: impairments in embryonic genome activation. Hum. Reprod. 18, 826–833.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sidis, Y. , Fujiwara, T. , Leykin, L. , Isaacson, K. , Toth, T. , and Schneyer, A. L. (1998). Characterization of inhibin/activin subunit, activin receptor, and follistatin messenger ribonucleic acid in human and mouse oocytes: evidence for activin’s paracrine signaling from granulosa cells to oocytes. Biol. Reprod. 59, 807–812.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Silva, C. C. , Groome, N. P. , and Knight, P. G. (2003). Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization. Reproduction 125, 33–42.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Silva, J. R. , van den Hurk, R. , van Tol, H. T. , Roelen, B. A. , and Figueiredo, J. R. (2004). Gene expression and protein localisation for activin-A, follistatin and activin receptors in goat ovaries. J. Endocrinol. 183, 405–415.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sirard, M. A. , Richard, F. , Blondin, P. , and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–136.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sirard, M. A. , Desrosier, S. , and Assidi, M. (2007). In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 68, S71–S76.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sugiura, K. , Pendola, F. L. , and Eppig, J. J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 20–30.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sutton, M. L. , Gilchrist, R. B. , and Thompson, J. G. (2003). Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tanghe, S. , Van Soom, A. , Nauwynck, H. , Coryn, M. , and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tatemoto, H. , Sakurai, N. , and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tesfaye, D. , Ponsuksili, S. , Wimmers, K. , Gilles, M. , and Schellander, K. (2004). A comparative expression analysis of gene transcripts in post-fertilization developmental stages of bovine embryos produced in vitro or in vivo. Reprod. Domest. Anim. 39, 396–404.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Thomas, R. E. , Armstrong, D. T. , and Gilchrist, R. B. (2004). Bovine cumulus cell–oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels. Biol. Reprod. 70, 548–556.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Topilko, P. , Schneider-Maunoury, S. , Levi, G. , Trembleau, A. , Gourdji, D. , Driancourt, M. A. , Rao, C. V. , and Charnay, P. (1998). Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol. Endocrinol. 12, 107–122.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Torner, H. , Ghanem, N. , Ambros, C. , Hölker, M. , and Tomek, W. , et al. (2008). Molecular and sub-cellular characterization of oocytes screened for their developmental competence based on G6PDH activity. Reproduction 135, 197–212.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
van de Leemput, E. E. , Vos, P. L. A. M. , Zeinstra, E. C. , Bevers, M. M. , van der Weijden, G. C. , and Dieleman, S. J. (1999). Improved in vitro embryo development using in vivo matured oocytes from heifers superiovulated with a controlled preovulatory LH surge. Theriogenology 52, 335–349.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
van Montfoort, A. P. , Geraedts, J. P. , Dumoulin, J. C. , Stassen, A. P. , Evers, J. L. , and Ayoubi, T. A. (2008). Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol. Hum. Reprod. 14, 157–168.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Vanderhyden, B. C. , Telfer, E. E. , and Eppig, J. J. (1992). Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46, 1196–1204.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Vitale, A. M. , Calvert, M. E. , Mallavarapu, M. , Yurttas, P. , Perlin, J. , Herr, J. , and Coonrod, S. (2007). Proteomic profiling of murine oocyte maturation. Mol. Reprod. Dev. 74, 608–616.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Watson, A. J. , Sousa, P. D. , Caveney, A. , Bancroft, L. C. , Natale, D. , Urquhart, J. , and Westhusin, M. E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biol. Reprod. 62, 355–364.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wells, D. , and Patrizio, P. (2008). Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am. J. Obstet. Gynecol. 198, 455.e1–455.e9.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wongsrikeao, P. , Kaneshige, Y. , Ooki, R. , Taniguchi, M. , Agung, B. , Nii, M. , and Otoi, T. (2005). Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Domest. Anim. 40, 166–170.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Yoshida, M. (1993). Role of glutathione in the maturation and fertilization of pig oocytes in vitro. Mol. Reprod. Dev. 35, 76–81.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Yoshioka, S. , Ochsner, S. , Russell, D. L. , Ujioka, T. , Fujii, S. , Richards, J. S. , and Espey, L. L. (2000). Expression of tumor necrosis factor-stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology 141, 4114–4119.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Yuan, Y. , Hao, Z. D. , Liu, J. , Wu, Y. , Yang, L. , Liu, G. S. , Tian, J. H. , Zhu, S. E. , and Zeng, S. M. (2008). Heat shock at the germinal vesicle breakdown stage induces apoptosis in surrounding cumulus cells and reduces maturation rates of porcine oocytes in vitro. Theriogenology 70, 168–178.
| PubMed | CAS |
Zhang, L. , Jiang, S. , Wozniak, P. J. , Yang, X. , and Godke, R. A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–344.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Zhang, X. , Jafari, N. , Barnes, R. B. , Confino, E. , Milad, M. , and Kazer, R. R. (2005). Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil. Steril. 83(Suppl. 1), 1169–1179.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |