Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

CatSper-null mutant spermatozoa are unable to ascend beyond the oviductal reservoir

Katharine Ho A , Collin A. Wolff A and Susan S. Suarez A B
+ Author Affiliations
- Author Affiliations

A Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

B Corresponding author. Email: sss7@cornell.edu

Reproduction, Fertility and Development 21(2) 345-350 https://doi.org/10.1071/RD08183
Submitted: 29 August 2008  Accepted: 6 October 2008   Published: 27 January 2009

Abstract

Sperm hyperactivation is characterised by high-amplitude, asymmetrical flagellar bending and is required to penetrate the oocyte zona pellucida. It was proposed that hyperactivation also enables spermatozoa to reach the oocyte by assisting escape from the oviductal sperm reservoir. To test this hypothesis, the behaviour of CatSper-null mouse spermatozoa in the oviduct was compared with that of spermatozoa from heterozygotes. CatSper–/– males are infertile because their spermatozoa fail to hyperactivate, whereas spermatozoa from CatSper+/– males have normal amounts of CatSper proteins and can hyperactivate. Males were mated with wild-type females on the morning of ovulation. Oviducts were obtained 1 or 4 h later, and behaviour of spermatozoa was examined using transillumination. At 1 h, null mutant spermatozoa remained attached by their heads to oviductal epithelium in the reservoir, whereas spermatozoa from heterozygotes detached from the oviductal epithelium after performing deep asymmetrical flagellar bends. At 4 h, 50 to 200 CatSper+/– spermatozoa were still seen in the oviducts; in contrast, only one CatSper–/– spermatozoon was found. CatSper–/– spermatozoa were lost from the oviducts after failing to detach from the epithelium in a timely manner, thus demonstrating that hyperactivation is required by spermatozoa to ascend beyond the oviductal reservoir.

Additional keywords: fallopian tube, hyperactivation, sperm motility, uterine tube.


Acknowledgement

The present study was supported by grant MCB-0421855 from the National Science Foundation (USA) to S.S.S.


References

Carlson, A. E. , Quill, T. A. , Westenbroek, R. E. , Schuh, S. M. , Hille, B. , and Babcock, D. F. (2005). Identical phenotypes of CatSper1- and CatSper2-null sperm. J. Biol. Chem. 280, 32 238–32 244.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chakraborty, J. , and Nelson, L. (1975). Fate of surplus sperm in the fallopian tube of the white mouse. Biol. Reprod. 12, 455–463.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

DeMott, R. P. , and Suarez, S. S. (1992). Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 46, 779–785.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fan, J. , Lefebvre, J. , and Manjunath, P. (2006). Bovine seminal plasma proteins and their relatives: a new expanding superfamily in mammals. Gene 375, 63–74.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gwathmey, T. M. , Ignotz, G. G. , and Suarez, S. S. (2003). PDC-109 (BSP-A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir. Biol. Reprod. 69, 809–815.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gwathmey, T. M. , Ignotz, G. G. , Mueller, J. L. , Manjunath, P. , and Suarez, S. S. (2006). Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol. Reprod. 75, 501–507.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ho, H. C. , Granish, K. A. , and Suarez, S. S. (2002). Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev. Biol. 250, 208–217.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Jin, J. , Jin, N. , Zheng, H. , Ro, S. , Tafolla, D. , Sanders, K. M. , and Yan, W. (2007). Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility. Biol. Reprod. 77, 37–44.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kirichok, Y. , Navarro, B. , and Clapham, D. E. (2006). Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439, 737–740.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lefebvre, R. , and Suarez, S. S. (1996). Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol. Reprod. 54, 575–582.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Marquez, B. , Ignotz, G. , and Suarez, S. S. (2007). Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1- and CatSper2-null sperm. Dev. Biol. 303, 214–221.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Qi, H. , Moran, M. M. , Navarro, B. , Chong, J. A. , Krapivinsky, G. , Krapivinsky, L. , Kirichok, Y. , Ramsey, I. S. , Quill, T. A. , and Clapham, D. E. (2007). All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl. Acad. Sci. USA 104, 1219–1223.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Quill, T. A. , Sugden, S. A. , Rossi, K. L. , Doolittle, L. K. , Hammer, R. E. , and Garbers, D. L. (2003). Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc. Natl. Acad. Sci. USA 100, 14 869–14 874.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ren, D. , Navarro, B. , Perez, G. , Jackson, A. C. , Hsu, S. , Shi, Q. , Tilly, J. L. , and Clapham, D. E. (2001). A sperm ion channel required for sperm motility and male fertility. Nature 413, 603–609.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stauss, C. R. , Votta, T. J. , and Suarez, S. S. (1995). Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol. Reprod. 53, 1280–1285.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suarez, S. S. (1987). Sperm transport and motility in the mouse oviduct: observations in situ. Biol. Reprod. 36, 203–210.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suarez, S. S. (2007). Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod. Fertil. Dev. 19, 103–110.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suarez, S. S. (2008). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suarez, S. S. , and Osman, R. A. (1987). Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol. Reprod. 36, 1191–1198.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suarez, S. S. , and Pacey, A. A. (2006). Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suarez, S. S. , Varosi, S. M. , and Dai, X. (1993). Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc. Natl. Acad. Sci. USA 90, 4660–4664.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yanagimachi, R. , and Usui, N. (1974). Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp. Cell Res. 89, 161–174.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |