Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes

Lin Lin A C D G , Peter M. Kragh A C , Stig Purup B , Masashige Kuwayama E , Yutao Du A C D , Xiuqing Zhang D , Huanming Yang D , Lars Bolund C , Henrik Callesen A and Gábor Vajta F
+ Author Affiliations
- Author Affiliations

A Population Genetics and Embryology, Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, DK-8830 Tjele, Denmark.

B Nutrition and Production Physiology, Department of Animal Health, Welfare and Nutrition, Faculty of Agricultural Sciences, University of Aarhus, DK-8830 Tjele, Denmark.

C Institute of Human Genetics, University of Aarhus, DK-8000 Aarhus, Denmark.

D Beijing Genomics Institute, Airport-Industrial Zone B-6, Beijing 101300, China.

E Kato Ladies’ Clinic, Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan.

F PIVET Medical Centre, 166–168 Cambridge Street, Perth, WA 6007, Australia.

G Corresponding author. Email: lin.lin@agrsci.dk

Reproduction, Fertility and Development 21(2) 338-344 https://doi.org/10.1071/RD08145
Submitted: 24 June 2008  Accepted: 29 September 2008   Published: 27 January 2009

Abstract

Exposure of porcine oocytes to increased concentrations of NaCl prior to manipulation has been reported not only to increase cryotolerance after vitrification, but also to improve developmental competence after somatic cell nuclear transfer (SCNT). In the present study we compared the effects of NaCl with those of concentrated solutions of two non-permeable osmotic agents, namely sucrose and trehalose, on the cryotolerance and developmental competence of porcine oocytes. In Experiment 1, porcine in vitro-matured cumulus–oocyte complexes (COCs; n = 1200) were exposed to 588 mOsmol NaCl, sucrose or trehalose solutions for 1 h, allowed to recover for a further 1 h, vitrified, warmed and subjected to parthenogenetic activation. Both Day 2 (where Day 0 is the day of activation) cleavage and Day 7 blastocyst rates were significantly increased after NaCl, sucrose and trehalose osmotic treatments compared with untreated controls (cleavage: 46 ± 5%, 44 ± 7%, 45 ± 4% and 26 ± 6%, respectively; expanded blastocyst rate: 6 ± 1%, 6 ± 2%, 7 ± 2% and 1 ± 1%, respectively). In Experiment 2, COCs (n = 2000) were treated with 588 mOsmol NaCl, sucrose or trehalose, then used as recipients for SCNT (Day 0). Cleavage rates on Day 1 did not differ between the NaCl-, sucrose-, trehalose-treated and the untreated control groups (92 ± 3%, 95 ± 3%, 92 ± 2% and 94 ± 2%, respectively), but blastocyst rates on Day 6 were higher in all treated groups compared with control (64 ± 2%, 69 ± 5%, 65 ± 3% and 47 ± 4%, respectively). Cell numbers of Day 6 blastocysts were higher in the control and NaCl-treated groups compared with the sucrose- and trehalose-treated groups. In conclusion, treatment of porcine oocytes with osmotic stress improved developmental competence after vitrification combined with parthenogenetic activation, as well as after SCNT.

Additional keywords: hand-made cloning, parthenogenetic activation, vitrification.


Acknowledgements

The authors thank John Yovich for professional and language corrections and suggestions, and Klaus Villemoes, Anette Pedersen, Janne Adamsen and Ruth Kristensen for their excellent technical support.


References

Alahiotis, S. N. (1983). Heat shock proteins. A new view on the temperature compensation. Comp. Biochem. Physiol. B 75, 379–387.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Lin L., Du Y., Liu Y., Kragh P. M., Li J., et al. (2009). Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes. Reprod. Biomed. Online, in press.

Liu, Y. , Gampert, L. , Nething, K. , and Steinacker, J. M. (2006). Response and function of skeletal muscle heat shock protein 70. Front. Biosci. 11, 2802–2827.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lunney, J. K. (2007). Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3, 179–184.
PubMed |  CAS |

Men, H. , Agca, Y. , Riley, L. K. , and Critser, J. K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008–2016.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Milner, C. M. , and Campbell, R. D. (1990). Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242–251.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Molina-Hoppner, A. , Doster, W. , Vogel, R. F. , and Ganzle, M. G. (2004). Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl. Environ. Microbiol. 70, 2013–2020.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mosser, D. D. , Caron, A. W. , Bourget, L. , Meriin, A. B. , Sherman, M. Y. , Morimoto, R. I. , and Massie, B. (2000). The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol. 20, 7146–7159.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nagashima, H. , Kashiwazaki, N. , Ashman, R. J. , Grupen, C. G. , and Nottle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nollen, E. A. , Brunsting, J. F. , Roelofsen, H. , Weber, L. A. , and Kampinga, H. H. (1999). In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol. Cell. Biol. 19, 2069–2079.
PubMed |  CAS |

Pratt, S. L. , Sherrer, E. S. , Reeves, D. E. , and Stice, S. L. (2006). Factors influencing the commercialisation of cloning in the pork industry. Soc. Reprod. Fertil. Suppl. 62, 303–315.
PubMed |  CAS |

Pribenszky, C. , Molnar, M. , Cseh, S. , and Solti, L. (2005a). Improving post-thaw survival of cryopreserved mouse blastocysts by hydrostatic pressure challenge. Anim. Reprod. Sci. 87, 143–150.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pribenszky, C. , Molnar, M. , Solti, L. , Dengg, J. , and Lederer, J. (2005b). The effect of high hydrostatic pressure on the motility of fresh and frozen-thawed bull semen. Reprod. Fertil. Dev. 17, 199–200.
Crossref | GoogleScholarGoogle Scholar |

Pribenszky, C. , Molnar, M. , Ulrich, P. , Barbosa, C. , Hatamoto, L. , and Santos, C. (2005c). Pressure assisted cryopreservation: a novel possibility for IVP bovine blastocyst cryopreservation. Reprod. Domest. Anim. 40, 338–344.
Crossref | GoogleScholarGoogle Scholar |

Pribenszky, C. , Molnar, M. , Horvath, A. , Harnos, A. , and Szenci, O. (2006). Hydrostatic pressure induced increase in post-thaw motility of frozen boar spermatozoa. Reprod. Fertil. Dev. 18, 162–163.
Crossref | GoogleScholarGoogle Scholar |

Riabowol, K. T. , Mizzen, L. A. , and Welch, W. J. (1988). Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242, 433–436.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Roesser, M. , and Muller, V. (2001). Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3, 743–754.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schoevers, E. J. , Colenbrander, B. , and Roelen, B. A. (2007). Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology 67, 1108–1122.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schook, L. , Beattie, C. , Beever, J. , Donovan, S. , Jamison, R. , Zuckermann, F. , Niemi, S. , Rothschild, M. , Rutherford, M. , and Smith, D. (2005). Swine in biomedical research: creating the building blocks of animal models. Anim. Biotechnol. 16, 183–190.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Song, K. , and Lee, E. (2007). Modification of maturation condition improves oocyte maturation and in vitro development of somatic cell nuclear transfer pig embryos. J. Vet. Sci. 8, 81–87.
PubMed |

Strauss, G. , Schurtenberger, P. , and Hauser, H. (1986). The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze–thawing and freeze–drying. Biochim. Biophys. Acta 858, 169–180.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Suzuki, C. , and Yoshioka, K. (2006). Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium. Reprod. Fertil. Dev. 18, 789–795.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takahagi, Y. , Fujimura, T. , Miyagawa, S. , Nagashima, H. , Shigehisa, T. , Shirakura, R. , and Murakami, H. (2005). Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol. Reprod. Dev. 71, 331–338.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vajta, G. , and Nagy, Z. P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 12, 779–796.
PubMed |

Vajta, G. , Holm, P. , Greve, T. , and Callesen, H. (1997). The submarine incubation system, a new tool for in vitro embryo culture. A technique report. Theriogenology 48, 1379–1385.
Crossref | GoogleScholarGoogle Scholar |

Vajta, G. , Peura, T. T. , Holm, P. , Paldi, A. , Greve, T. , Trounson, A. O. , and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vajta, G. , Lewis, I. M. , Hyttel, P. , Thouas, G. A. , and Trounson, A. O. (2001). Somatic cell cloning without micromanipulators. Cloning 3, 89–95.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vajta, G. , Zhang, Y. , and Machaty, Z. (2007). Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod. Fertil. Dev. 19, 403–423.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vodicka, P. , Smetana, K. , Dvorankova, B. , Emerick, T. , Xu, Y. Z. , Ourednik, J. , Ourednik, V. , and Motlik, J. (2005). The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 1049, 161–171.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, M. K. , Liu, J. L. , Li, G. P. , Lian, L. , and Chen, D. Y. (2001). Sucrose pretreatment for enucleation: an efficient and non-damage method for removing the spindle of the mouse MII oocyte. Mol. Reprod. Dev. 58, 432–436.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wright, D. L. , Eroglu, A. , Toner, M. , and Toth, T. L. (2004). Use of sugars in cryopreserving human oocytes. Reprod. Biomed. Online 9, 179–186.
PubMed |  CAS |

Wu, D. , Cheung, Q. C. , Wen, L. , and Li, J. (2006). A growth-maturation system that enhances the meiotic and developmental competence of porcine oocytes isolated from small follicles. Biol. Reprod. 75, 547–554.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yoshioka, K. , Suzuki, C. , Tanaka, A. , Anas, I. M. , and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, Y. , Pan, D. , Sun, X. , Sun, G. , Wang, X. , Liu, X. , Li, Y. , Dai, Y. , and Li, N. (2006). Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer. Sci. China C Life Sci. 49, 164–171.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, G. , Sun, Q. Y. , and Chen, D. Y. (2008). Effects of sucrose treatment on the development of mouse nuclear transfer embryos with morula blastomeres as donors. Zygote 16, 15–19.
PubMed |