Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression of eukaryotic elongation initiation factor 1A differentially marks zygotic genome activation in biparental and parthenogenetic porcine embryos and correlates with in vitro developmental potential

Luca Magnani A , Christine M. Johnson A and Ryan A. Cabot A B
+ Author Affiliations
- Author Affiliations

A Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.

B Corresponding author. Email: rcabot@purdue.edu

Reproduction, Fertility and Development 20(7) 818-825 https://doi.org/10.1071/RD08072
Submitted: 8 April 2008  Accepted: 1 July 2008   Published: 1 September 2008

Abstract

Zygotic genome activation (ZGA) is a major event during cleavage development. In vitro manipulation of mammalian embryos (including embryo culture) can result in developmental arrest around the time of ZGA. Eukaryotic elongation initiation factor 1A (eIF1A) has been used as a marker for ZGA in some mammalian species. We hypothesised expression of eIF1A can be used to assess ZGA in the pig; we also hypothesised that the expression profile of eIF1A can be used to assess developmental potential in vitro. The aims of the present study were to determine the expression pattern of eIF1A during porcine cleavage development and to assess its expression levels in embryos of different quality. We used a real-time reverse transcription–polymerase chain reaction assay to quantify eIF1A transcripts at different time points during cleavage development in porcine embryos produced by parthenogenetic activation (PA) and in vitro fertilisation (IVF). We found that eIF1A is activated at the two-cell stage in IVF embryos and at the four-cell stage in PA embryos. We showed that the increase in transcript levels observed in parthenogenetic embryos is dependent on de novo transcription. We found altered levels of eIF1A transcripts in parthenogenetic embryos that presented as either two- or eight-cell embryos 48 h after activation compared with four-cell embryos at the same time point. Our work supports the hypothesis that eIF1A is a marker of porcine ZGA and its expression profile can be used to assess embryo quality.


Acknowledgements

The authors thank the Indiana Packers Corporation for the providing the porcine ovaries used in the present study. The authors also thank Dr Randall S. Prather, University of Missouri-Columbia, for providing us with the YWHAG construct for use in our q-RT-PCR experiments, and Alexander Lipka, Purdue University, for helping with the statistical analysis. Funding for this work was provided, in part, by the Agricultural Research Programs office, Purdue University (ARP manuscript #2008–18310).


References

Abeydeera, L. R. , and Day, B. N. (1997). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Abeydeera, L. R. , Wang, W. H. , Prather, R. S. , and Day, B. N. (1998). Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod. 58, 1316–1320.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Adenot, P. G. , Mercier, Y. , Renard, J. P. , and Thompson, E. M. (1997). Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124, 4615–4625.
PubMed |

Anderson, J. E. , Matteri, R. L. , Abeydeera, L. R. , Day, B. N. , and Prather, R. S. (1999). Cyclin B1 transcript quantitation over the maternal to zygotic transition in both in vivo- and in vitro-derived 4-cell porcine embryos. Biol. Reprod. 61, 1460–1467.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Artley, J. K. , Braude, P. R. , and Johnson, M. H. (1992). Gene activity and cleavage arrest in human pre-embryos. Hum. Reprod. 7, 1014–1021.
PubMed |

Bettegowda, A. , Lee, K. B. , and Smith, G. W. (2008). Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod. Fertil. Dev. 20, 45–53.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bouniol, C. , Nguyen, E. , and Debey, P. (1995). Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp. Cell Res. 218, 57–62.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Conover, J. C. , Temeles, G. L. , Zimmermann, J. W. , Burke, B. , and Schultz, R. M. (1991). Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev. Biol. 144, 392–404.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Davis, W. , De Sousa, P. A. , and Schultz, R. M. (1996). Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation. Dev. Biol. 174, 190–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

De Sousa, P. A. , Watson, A. J. , and Schultz, R. M. (1998). Transient expression of a translation initiation factor is conservatively associated with embryonic gene activation in murine and bovine embryos. Biol. Reprod. 59, 969–977.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gosden, R. G. (2002). Oogenesis as a foundation for embryogenesis. Mol. Cell. Endocrinol. 186, 149–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hamatani, T. , Carter, M. G. , Sharov, A. A. , and Ko, M. S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hamatani, T. , Ko, M. Sh. , Yamada, M. , Kuji, N. , Mizusawa, Y. , Shoji, M. , Hada, T. , Asada, H. , Maruyama, T. , and Yoshimura, Y. (2006). Global gene expression profiling of preimplantation embryos. Hum. Cell 19, 98–117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Heikinheimo, O. , Lanzendorf, S. E. , Baka, S. G. , and Gibbons, W. E. (1995). Cell cycle genes c-mos and cyclin-B1 are expressed in a specific pattern in human oocytes and preimplantation embryos. Hum. Reprod. 10, 699–707.
PubMed |

Jarrell, V. L. , Day, B. N. , and Prather, R. S. (1991). The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol. Reprod. 44, 62–68.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kanka, J. (2003). Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59, 3–19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Latham, K. E. , Garrels, J. I. , Chang, C. , and Solter, D. (1991). Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112, 921–932.
PubMed |

Lindeberg, M. , Hovatta, O. , and Ahrlund-Richter, L. (2004). Real-time reverse transcription–polymerase chain reaction analysis of translation initiation factor 1A (eIF-1A) in human and mouse preimplantation embryos. Reprod. Biomed. Online 8, 338–343.
PubMed |

Lonergan, P. , Gutiérrez-Adán, A. , Pintado, B. , Fair, T. , Ward, F. , Fuente, J. D. , and Boland, M. (2000). Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol. Reprod. Dev. 57, 146–152.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Magnani, L. , and Cabot, R. A. (2007). Developmental arrest induced in cleavage stage porcine embryos following microinjection of mRNA encoding Brahma (Smarca 2), a chromatin remodeling protein. Mol. Reprod. Dev. 74, 1262–1267.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Minami, N. , Suzuki, T. , and Tsukamoto, S. (2007). Zygotic gene activation and maternal factors in mammals. J. Reprod. Dev. 53, 707–715.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nothias, J. Y. , Majumder, S. , Kaneko, K. J. , and DePamphilis, M. L. (1995). Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22 077–22 080.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oropeza, A. , Wrenzycki, C. , Herrmann, D. , Hadeler, K. G. , and Niemann, H. (2004). Improvement of the developmental capacity of oocytes from prepubertal cattle by intraovarian insulin-like growth factor-I application. Biol. Reprod. 70, 1634–1643.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Qiu, J. J. , Zhang, W. W. , Wu, Z. L. , Wang, Y. H. , Qian, M. , and Li, Y. P. (2003). Delay of ZGA initiation occurred in 2-cell blocked mouse embryos. Cell Res. 13, 179–185.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ram, P. T. , and Schultz, R. M. (1993). Reporter gene expression in G2 of the 1-cell mouse embryo. Dev. Biol. 156, 552–556.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schoenbeck, R. A. , Peter, M. S. , Rickords, L. F. , Stumpf, T. T. , and Prather, R. S. (1992). Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo. Biol. Reprod. 47, 1118–1125.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schultz, R. M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–538.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitworth, K. , Springer, G. K. , Forrester, L. J. , Spollen, W. G. , and Ries, J. , et al. (2004). Developmental expression of 2489 gene clusters during pig embryogenesis: an expressed sequence tag project. Biol. Reprod. 71, 1230–1243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yasuda, G. K. , and Schubiger, G. (1992). Temporal regulation in the early embryo: is MBT too good to be true? Trends Genet. 8, 124–127.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshioka, K. , Suzuki, C. , Tanaka, A. , Anas, I. M. , and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuccotti, M. , Boiani, M. , Ponce, R. , Guizzardi, S. , Scandroglio, R. , Garagna, S. , and Redi, C. A. (2002). Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol. Reprod. Dev. 61, 14–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |