Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Pregnancy and lactation modulate maternal splenic growth and development of the erythroid lineage in the rat and mouse

Juan J. Bustamante A B E , Guoli Dai C and Michael J. Soares A B D F
+ Author Affiliations
- Author Affiliations

A Institute of Maternal–Fetal Biology, University of Kansas Medical Center, Kansas City, KA 66160, USA.

B Division of Cancer and Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KA 66160, USA.

C Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KA 66160, USA.

D Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KA 66160, USA.

E Present address: Department of Pharmaceutical Sciences, Texas A&M Health Science Center, Irma Lerma Rangel College of Pharmacy, Kingsville, TX 78363, USA.

F Corresponding author. Email: msoares@kumc.edu

Reproduction, Fertility and Development 20(2) 303-310 https://doi.org/10.1071/RD07106
Submitted: 7 July 2007  Accepted: 3 December 2007   Published: 24 January 2008

Abstract

Maternal physiology changes dramatically during the course of gestation and lactation to meet the needs of the developing fetus and newborn. In the present study, we examined the influence of pregnancy and lactation on growth and erythroid gene expression patterns of the maternal spleen. Holtzman Sprague-Dawley rats and CD-1 mice were killed at various stages of gestation and post partum. We observed pregnancy dependent increases in spleen weight and spleen DNA content in both the rat and mouse. In the rat, spleen size was greatest at the end of pregnancy and regressed post partum. In contrast, mouse spleen size peaked by gestational Day 13 and regressed to its non-pregnant weight before parturition. Pregnancy dependent changes in the size of the spleen were primarily due to an increase in red pulp. Maternal spleen expression of erythroid-associated genes (erythroid Krüppel-like factor, erythroid 5-aminolevulinate synthase-2, β-major globin) was influenced by pregnancy and lactation. A pregnancy dependent increase in erythroid progenitors was also observed. In summary, the demands of pregnancy and lactation cause marked adaptations in the maternal spleen. The maternal spleen increases in size and exhibits an expansion of the erythroid lineage.

Additional keywords: erythropoiesis, spleen.


Acknowledgements

The authors thank Mr Adam Alt and Ms Mary Jane Peal for their technical assistance. The authors thank Joyce Slusser for her assistance with the flow cytometry analysis. This work was supported by the National Institutes of Health (HD20676, HD39878, HD48861, HD49503, HD55523) and the Hall Family Foundation.


References

Abkowitz, J. L. , Schaison, G. , Boulad, F. , Brown, D. L. , Buchanan, G. R. , Johnson, C. A. , Murray, J. C. , and Sabo, K. M. (2002). Response of Diamond–Blackfan anemia to metoclopramide: evidence for a role for prolactin in erythropoiesis. Blood 100, 2687–2691.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Akiyama, M. , Yanagisawa, T. , Yuza, Y. , Yokoi, K. , Ariga, M. , Fujisawa, K. , Hoshi, Y. , and Eto, Y. (2005). Successful treatment of Diamond–Blackfan anemia with metoclopramide. Am. J. Hematol. 78, 295–298.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Alam, S. M. K. , Ain, R. , Konno, T. , Ho-Chen, J. K. , and Soares, M. J. (2006). The rat prolactin gene family locus: species-specific gene family expansion. Mamm. Genome 17, 858–877.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Andrews, Z. B. (2005). Neuroendocrine regulation of prolactin secretion during late pregnancy: easing the transition into lactation. J. Neuroendocrinol. 17, 466–473.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bellone, G. , Astarita, P. , Artusio, E. , Silvestri, S. , Mareschi, K. , Turletti, A. , Buttiglieri, S. , Emanuelli, G. , and Matera, L. (1997). Bone marrow stroma-derived prolactin is involved in basal and platelet-activating factor-stimulated in vitro erythropoiesis. Blood 90, 21–27.
PubMed |

Bhattacharyya, S. , Lin, J. , and Linzer, D. I. H. (2002). Reactivation of a hematopoietic endocrine program of pregnancy contributes to recovery from thrombocytopenia. Mol. Endocrinol. 16, 1386–1393.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bittorf, T. , Jaster, R. , Soares, M. J. , Seiler, J. , Brock, J. , Friese, K. , and Müller, H. (2000). Induction of erythroid proliferation and differentiation by a trophoblast-specific cytokine involves activation of the JAK/STAT pathway. J. Mol. Endocrinol. 25, 253–262.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chatterjee-Hasrouni, S. , Santer, V. , and Lala, P. K. (1980). Characterization of maternal small lymphocyte subsets during allogeneic pregnancy in the mouse. Cell. Immunol. 50, 290–304.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chomczynski, P. , and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Rijk, E. P. C. T. , van Esch, E. , and Flik, G. (2002). Pregnancy dating in the rat: placental morphology and maternal blood parameters. Toxicol. Pathol. 30, 271–282.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dzikaite, V. , Hultcrantz, R. , and Melefors, O. (2003). The regulatory effect of heme on erythroid aminolevulinate synthase in natural erythroid cells. Biochim. Biophys. Acta 1630, 19–24.
PubMed |

Erskine, M. S. (1995). Prolactin release after mating and genitosensory stimulation in females. Endocr. Rev. 16, 508–528.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Espersen, K. , Frandsen, H. , Lorentzen, T. , Kanstrup, I. L. , and Christensen, N. J. (2002). The human spleen as an erythrocyte reservoir in diving-related interventions. J. Appl. Physiol. 92, 2071–2079.
PubMed |

Faria, T. N. , Deb, S. , Kwok, S. C. , Talamantes, F. , and Soares, M. J. (1990). Ontogeny of placental lactogen-I and placental lactogen-II expression in the developing rat placenta. Dev. Biol. 141, 279–291.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fowler, J. H. , and Nash, D. J. (1968). Erythropoiesis in the spleen and bone marrow of the pregnant mouse. Dev. Biol. 18, 331–353.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hetherington, C. M. , and Humber, D. P. (1977). The effect of pregnancy on lymph node weight in the mouse. J. Immunogenet. 4, 271–276.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ho-Chen, J. K. , Bustamante, J. J. , and Soares, M. J. (2007). Prolactin-like protein-F subfamily of placental hormones/cytokines: responsiveness to maternal hypoxia. Endocrinology 148, 559–565.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jepson, J. H. , and Lowenstein, L. (1964). Effect of prolactin on erythropoiesis in the mouse. Blood 24, 726–738.
PubMed |

Jepson, J. H. , and Lowenstein, L. (1965). Erythropoiesis during pregnancy and lactation. I. Effect of various hormones on erythropoiesis during lactation. Proc. Soc. Exp. Biol. Med. 120, 500–504.
PubMed |

Lenox, L. E. , Perry, J. M. , and Paulson, R. F. (2005). BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105, 2741–2748.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lin, J. , and Linzer, D. I. H. (1999). Induction of megakaryocytes differentiation by a novel pregnancy-specific hormone. J. Biol. Chem. 274, 21 485–21 489.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lin, J. , Poole, J. , and Linzer, D. I. H. (1997). Two novel members of the prolactin/growth hormone family are expressed in the mouse placenta. Endocrinology 138, 5535–5540.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lin, J. , Toft, D. J. , Bengston, N. W. , and Linzer, D. I. (2000). Placental prolactins and the physiology of pregnancy. Recent Prog. Horm. Res. 55, 37–51.
PubMed | | PubMed |

Maroni, E. S. , and de Sousa, M. A. (1973). The lymphoid organs during pregnancy in the mouse. A comparison between a syngeneic and an allogeneic mating. Clin. Exp. Immunol. 13, 107–124.
PubMed |

Mattsson, R. , Nilsson, B. , and Lindahl-Kiessling, K. (1979). An investigation of splenic enlargement in pregnant mice. Dev. Comp. Immunol. 3, 683–695.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mattsson, R. , Mattsson, A. , and Lindahl-Kiessling, K. (1984). Anemia causes erythropoiesis and increased antibody synthesis in the spleen of the pregnant mouse. Dev. Comp. Immunol. 8, 169–178.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mebius, R. E. , and Kraal, G. (2005). Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Miller, I. J. , and Bieker, J. J. (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol. Cell. Biol. 13, 2776–2786.
PubMed |

Müller, H. , Orwig, K. E. , and Soares, M. J. (1998). Identification of two new members of the mouse prolactin gene family. Biochim. Biophys. Acta 1396, 251–258.
PubMed |

Obinata, M. , and Yanai, N. (1999). Cellular and molecular regulation of an erythropoietic inductive microenvironment (EIM). Cell Struct. Funct. 24, 171–179.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Perry, C. , and Soreq, H. (2002). Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur. J. Biochem. 269, 3607–3618.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peterson, K. R. (2003). Hemoglobin switching: new insights. Curr. Opin. Hematol. 10, 123–129.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Richards, S. M. , and Murphy, W. J. (2000). Use of human prolactin as a therapeutic protein to potentiate immunohematopoietic function. J. Neuroimmunol. 109, 56–62.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sahgal, N. , Knipp, G. T. , Liu, B. , Chapman, B. M. , Dai, G. , and Soares, M. J. (2000). Identification of two new nonclassical members of the rat prolactin family. J. Mol. Endocrinol. 24, 95–108.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sasaki, K. , Matsumura, G. , and Ito, T. (1981). Effects of pregnancy on erythropoiesis in the splenic red pulp of the mouse: a quantitative electron microscopic study. Arch. Histol. Jpn. 44, 429–438.
PubMed |

Soares, M. J. (2004). The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal–fetal interface. Reprod. Biol. Endocrinol. 2, 51.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Socolovsky, M. , Nam, H.-S. , Fleming, M. D. , Haase, V. H. , Brugnara, C. , and Lodish, H. F. (2001). Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Welniak, L. A. , Richards, S. M. , and Murphy, W. J. (2001). Effects of prolactin in hematopoiesis. Lupus 10, 700–705.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Woody, M. A. , Welniak, L. A. , Sun, R. , Tian, Z. G. , Henry, M. , Richards, S. , Raziuddin, A. , Longo, D. L. , and Murphy, W. J. (1999). Prolactin exerts hematopoietic growth-promoting effects in vivo and partially counteracts myelosuppression by azidothymidine. Exp. Hematol. 27, 811–816.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhou, B. , Lum, H. E. , Lin, J. , and Linzer, D. I. H. (2002). Two placental hormones are agonists in stimulating megakaryocyte growth and differentiation. Endocrinology 143, 4281–4286.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhou, B. , Kong, X. , and Linzer, D. I. H. (2005). Enhanced recovery form thrombocytopenia and neutropenia in mice costitutively expressing a placental hematopoietic cytokine. Endocrinology 146, 64–70.
Crossref | GoogleScholarGoogle Scholar | PubMed |