Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs

Melanie A. Bagg A C , Mark B. Nottle A , David T. Armstrong A and Christopher G. Grupen B
+ Author Affiliations
- Author Affiliations

A Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA 5005, Australia.

B Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia.

C Corresponding author. Email: melanie.bagg@adelaide.edu.au

Reproduction, Fertility and Development 19(7) 797-803 https://doi.org/10.1071/RD07018
Submitted: 25 January 2007  Accepted: 11 May 2007   Published: 8 August 2007

Abstract

The present study compared the distribution and steroid composition of 3-, 4- and 5–8-mm follicles on the surface of prepubertal and adult ovaries, and determined the relationship between follicle size and developmental competence of oocytes following parthenogenetic activation. The effect of 1 mm dibutyryl cAMP (dbcAMP) for the first 22 h of in vitro maturation (IVM) on the embryo development of prepubertal oocytes from the three follicle size cohorts was also determined. Compared with adult, prepubertal ovaries contained a higher proportion of 3-mm follicles (46 v. 72%, respectively), but a lower proportion of 4-mm (33 v. 22%, respectively) and 5–8-mm follicles (21 v. 6%, respectively). Adult follicular fluid (FF) contained 11-fold higher levels of progesterone (P4) than prepubertal FF, with similar levels observed between all adult follicle sizes. In prepubertal FF, the P4 concentration increased with follicle size from 3 to 4 to 5–8 mm. Rates of blastocyst development following parthenogenetic activation of adult oocytes from all three follicles sizes were similar (approximately 55%), whereas rates from prepubertal oocytes increased with increasing follicle size from 3 (17%) to 4 (36%) to 5–8 mm (55%). Treatment with dbcAMP for the first 22 h of IVM led to a 1.5-fold increase in the rate of blastocyst development for prepubertal oocytes from 3-mm follicles, but had no effect on prepubertal oocytes from the 4 and 5–8 mm classes. Mean blastocyst cell number increased with follicle size in prepubertal ovaries and was similar for all follicle sizes in adult ovaries. The present study demonstrates that the low efficiency of in vitro embryo production observed using prepubertal compared with adult pig oocytes is due to a greater proportion of 3-mm follicles on prepubertal ovaries, which contain oocytes of inferior developmental competence.

Additional keywords: blastocyst development, cAMP, donor age, embryo quality, steroid content.


Acknowledgements

The authors are grateful to the staff of Big River Pork (Murray Bridge, SA, Australia) for supplying the ovaries used in the present study, Glyn Naylor and Narelle Rowe-Simons for collection and transport of the ovaries and Samantha Schultz for her expert technical assistance. The authors acknowledge Dr Karen Kind for helpful discussion. This work was funded by grants from the National Health and Medical Research Council of Australia, the Canadian Institutes for Health Research and The Queen Elizabeth Hospital Research Foundation (Postgraduate Research Scholarship to MAB).


References

Algriany, O. , Bevers, M. , Schoevers, E. , Colenbrander, B. , and Dieleman, S. (2004). Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. Theriogenology 62, 1483–1497.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ainsworth, L. , Tsang, B. K. , Downey, B. R. , Marcus, G. J. , and Armstrong, D. T. (1980). Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicles. Biol. Reprod. 23, 621–627.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Archibong, A. E. , England, D. C. , and Stormshak, F. (1987). Factors contributing to early embryonic mortality in gilts bred at first estrus. J. Anim. Sci. 64, 474–478.
PubMed |

Armstrong, D. T. (2001). Effects of maternal age on oocyte developmental competence. Theriogenology 55, 1303–1322.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bagg, M. A. , Nottle, M. B. , Grupen, C. G. , and Armstrong, D. T. (2006). Effect of dibutyryl cAMP on the cAMP content, meiotic progression, and developmental potential of in vitro matured pre-pubertal and adult pig oocytes. Mol. Reprod. Dev. 73, 1326–1332.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bavister, B. D. (1989). A consistently successful procedure for in vitro fertilization of golden hamster eggs. Gamete Res. 23, 139–158.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Booth, P. J. , Holm, P. , and Callesen, H. (2005). The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology 63, 2040–2052.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , and Kim, N. H. (2005). Polyamines inhibit apoptosis in porcine parthenotes developing in vitro. Mol. Reprod. Dev. 70, 471–477.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , Lee, J. Y. , Choi, S. H. , Kwon, M. S. , Kim, T. , and Kim, N. H. (2004). Mouse granulocyte-macrophage colony-stimulating factor enhances viability of porcine embryos in defined culture conditions. Anim. Reprod. Sci. 84, 169–177.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , Jeong, Y. J. , Jun, J. H. , and Kim, N. H. (2005). Insulin-like growth factor-I alters apoptosis related genes and reduces apoptosis in porcine parthenotes developing in vitro. Theriogenology 63, 1070–1080.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Eiler, H. , and Nalbandov, A. V. (1977). Sex steroids in follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology 100, 331–338.
PubMed |

Griffin, J. , Emery, B. R. , Huang, I. , Peterson, C. M. , and Carrell, D. T. (2006). Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J. Exp. Clin. Assist. Reprod. 3, 2.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grupen, C. G. , McIlfatrick, S. M. , Ashman, R. J. , Boquest, A. C. , Armstrong, D. T. , and Nottle, M. B. (2003). Relationship between donor animal age, follicular fluid steroid content and oocyte developmental competence in the pig. Reprod. Fertil. Dev. 15, 81–87.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ikeda, K. , and Takahashi, Y. (2003). Comparison of maturational and developmental parameters of oocytes recovered from prepubertal and adult pigs. Reprod. Fertil. Dev. 15, 215–221.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kauffold, J. , Am, H. A. , Bergfeld, U. , Weber, W. , and Sobiraj, A. (2005). The in vitro developmental competence of oocytes from juvenile calves is related to follicular diameter. J. Reprod. Dev. 51, 325–332.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lequarre, A. S. , Vigneron, C. , Ribaucour, F. , Holm, P. , Donnay, I. , Dalbies-Tran, R. , Callesen, H. , and Mermillod, P. (2005). Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 63, 841–859.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, R. H. , Li, Y. H. , Jiao, L. H. , Wang, X. N. , Wang, H. , and Wang, W. H. (2002). Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles. Zygote 10, 253–260.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lucas, X. , Martinez, E. A. , Roca, J. , Vazquez, J. M. , Gil, M. A. , Pastor, L. M. , and Alabart, J. L. (2002). Relationship between antral follicle size, oocyte diameters and nuclear maturation of immature oocytes in pigs. Theriogenology 58, 871–885.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lucas, X. , Martinez, E. A. , Roca, J. , Vazquez, J. M. , Gil, M. A. , Pastor, L. M. , and Alabart, J. L. (2003). Influence of follicle size on the penetrability of immature pig oocytes for homologous in vitro penetration assay. Theriogenology 60, 659–667.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marchal, R. , Feugang, J. M. , Perreau, C. , Venturi, E. , Terqui, M. , and Mermillod, P. (2001). Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology 56, 17–29.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marchal, R. , Vigneron, C. , Perreau, C. , Bali-Papp, A. , and Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mattioli, M. , Galeati, G. , Barboni, B. , and Seren, E. (1994). Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J. Reprod. Fertil. 100, 403–409.
PubMed |

Menino, A. R. , Archibong, A. E. , Li, J. R. , Stormshak, F. , and England, D. C. (1989). Comparison of in vitro development of embryos collected from the same gilts at first and third estrus. J. Anim. Sci. 67, 1387–1393.
PubMed |

Motlik, J. , and Fulka, J. (1986). Factors affecting meiotic competence in pig oocytes. Theriogenology 25, 87–96.
Crossref | GoogleScholarGoogle Scholar |

Nagai, T. (1994). Current status and perspectives in IVM–IVF of porcine oocytes. Theriogenology 41, 73–78.
Crossref | GoogleScholarGoogle Scholar |

Niwa, K. (1993). Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fertil. Suppl. 48, 49–59.
PubMed |

O’Brien, J. K. , Dwarte, D. , Ryan, J. P. , Maxwell, W. M. C. , and Evans, G. (2000). Comparison of in vitro maturation, in vitro fertilization, metabolism and ultrastructure of oocytes from pre-pubertal and adult pigs. Reprod. Domest. Anim. 35, 101–107.
Crossref | GoogleScholarGoogle Scholar |

Petters, R. M. , and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
PubMed |

Sherrer, E. S. , Rathbun, T. J. , and Davis, D. L. (2004). Fertilization and blastocyst development in oocytes obtained from prepubertal and adult pigs. J. Anim. Sci. 82, 102–108.
PubMed |

Sun, Q. Y. , Lai, L. , Bonk, A. , Prather, R. S. , and Schatten, H. (2001). Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Mol. Reprod. Dev. 59, 192–198.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wu, M. F. , Huang, W. T. , Tsay, C. , Hsu, H. F. , Liu, B. T. , Chiou, C. M. , Yen, S. C. , Cheng, S. P. , and Ju, J. C. (2002). The stage-dependent inhibitory effect of porcine follicular cells on the development of preantral follicles. Anim. Reprod. Sci. 73, 73–88.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoon, K. W. , Shin, T. Y. , Park, J. I. , Roh, S. , Lim, J. M. , Lee, B. C. , Hwang, W. S. , and Lee, E. S. (2000). Development of porcine oocytes from preovulatory follicles of different sizes after maturation in media supplemented with follicular fluids. Reprod. Fertil. Dev. 12, 133–139.
Crossref | GoogleScholarGoogle Scholar | PubMed |