Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Two high-fertility mouse lines show differences in component fertility traits after long-term selection

Marion Spitschak A , Martina Langhammer B , Falk Schneider C , Ulla Renne B and Jens Vanselow A D
+ Author Affiliations
- Author Affiliations

A Forschungsbereich Molekularbiologie, Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.

B Forschungsbereich Genetik und Biometrie, FBN, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.

C Forschungsbereich Fortpflanzungsbiologie, FBN, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.

D Corresponding author. Email: vanselow@fbn-dummerstorf.de

Reproduction, Fertility and Development 19(7) 815-821 https://doi.org/10.1071/RD07009
Submitted: 12 January 2007  Accepted: 25 May 2007   Published: 8 August 2007

Abstract

Two selected high-fertility mouse lines, namely FL1 and FL2, and a non-selected control (Fzt:DU), all derived from the same genetic pool, were analysed as an animal model for polytocous species to elucidate the effects of long-term selection and to identify relevant component traits that may be responsible for fertility performance. The index trait used for breeding selection was largely increased by 104% and 142% in the FL1 and FL2 lines, respectively, resulting in an average litter size of 17.3 pups and 18.7 pups per litter in the FL1 and FL2 lines, respectively, compared with a litter size of 11.0 pups per litter in the control (Fzt:DU). In addition, different component fertility traits were analysed in females of all three lines at different stages of the oestrous cycle and pregnancy. In conclusion: (1) early embryonic development was accelerated in the FL1 and FL2 lines compared with control; (2) plasma progesterone levels were not correlated with fertility performance; (3) a largely increased ovulation number (i.e. number of corpora lutea) was responsible for high prolificacy in both lines; however, (4) the number of ova shed, as well as the rate of loss of ova and pre- and postimplantation conceptuses, was very different in the FL1 and FL2 lines, suggesting that different genetic components may be responsible for the high prolificacy in both high-fertility lines.

Additional keywords: blastocyst, embryo, fetal mortality rate, litter size, morula, oestrous cycle.


Acknowledgements

The authors thank Veronica Schreiter, Sonja Alm, Swanhild Rodewald, and Karin Ullerich for excellent technical assistance.


References

Bennett, G. L. , and Leymaster, K. A. (1989). Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. J. Anim. Sci. 67, 1230–1241.
PubMed |

Clutter, A. C. , Kirby, Y. L. K. , and Nielsen, M. K. (1994). Uterine capacity and ovulation rate in mice selected 21 generations on alternative criteria to increase litter size. J. Anim. Sci. 72, 577–583.
PubMed |

Dietl, G. , Langhammer, M. , and Renne, U. (2004). Model simulations for genetic random drift in the outbred strain Fzt:DU. Arch. Tierzucht 47, 595–604.


Durrant, B. S. , Eisen, E. J. , and Ulberg, L. C. (1980). Ovulation rate, embryo survival and ovarian sensitivity to gonadotrophins in mice selected for litter size and body weight. J. Reprod. Fertil. 59, 329–339.
PubMed |

Gion, J. M. , Clutter, A. C. , and Nielsen, M. K. (1990). Alternative methods of selection for litter size in mice: II. Response to thirteen generations of selection. J. Anim. Sci. 68, 3543–3556.
PubMed |

Goldbard, S. B. , and Warner, C. M. (1982). Genes affect the timing of early mouse embryo development. Biol. Reprod. 27, 419–424.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Holl, J. W. , and Robison, O. W. (2003). Results from nine generations of selection for increased litter size in swine. J. Anim. Sci. 81, 624–629.
PubMed |

Holt, M. , Vangen, O. , and Farstad, W. (2004). Components of litter size in mice after 110 generations of selection. Reproduction 127, 587–592.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jarrell, V. L. , and Dziuk, P. J. (1991). Effect of number of corpora lutea and fetuses on concentrations of progesterone in blood of goats. J. Anim. Sci. 69, 770–773.
PubMed |

Jefferson, W. N. , Couse, J. F. , Padilla-Banks, E. , Korach, K. S. , and Newbold, R. R. (2002). Neonatal exposure to genistein induces estrogen receptor (ER) alpha expression and multioocyte follicles in the maturing mouse ovary: Evidence for ERbeta-mediated and nonestrogenic actions. Biol. Reprod. 67, 1285–1296.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Johnson, R. K. , Zimmermann, D. R. , and Kittok, R. J. (1984). Selection for components of reproduction in swine. Livestock Prod. Sci. 11, 541–558.
Crossref | GoogleScholarGoogle Scholar |

Kirby, Y. K. , and Nielsen, M. K. (1993). Alternative methods of selection for litter size in mice: III. Response to 21 generations of selection. J. Anim. Sci. 71, 571–578.
PubMed |

Lucci, C. M. , Amorim, C. A. , Rodrigues, A. P. R. , Figueiredo, J. R. , Bao, S. N. , Silva, J. R. V. , and Goncalves, P. B. D. (1999). Study of preantral follicle population in situ and after mechanical isolation from caprine ovaries at different reproductive stages. Anim. Reprod. Sci. 56, 223–236.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martin, P. A. , Bevier, G. W. , and Dziuk, P. J. (1977). The effect of number of corpora lutea on the length of gestation in pigs. Biol. Reprod. 16, 633–637.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Michael, S. D. , Geschwind, I. I. , Bradford, G. E. , and Stabenfeldt, G. H. (1975). Pregnancy in mice selected for small litter size: reproductive hormone levels and effect of exogenous hormones. Biol. Reprod. 12, 400–407.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Purnell, E. T. , Warner, C. M. , Kort, H. I. , Mitchell-Leef, D. , Elsner, C. W. , Shapiro, D. B. , Massey, J. B. , and Roudebush, W. E. (2006). Influence of the preimplantation embryo development (Ped) gene on embryonic platelet-activating factor (PAF) levels. J. Assist. Reprod. Genet. 23, 269–272.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ribeiro, E. L. , van Engelen, M. A. , and Nielsen, M. K. (1996). Embryonal survival to 6 days in mice selected on different criteria for litter size. J. Anim. Sci. 74, 610–615.
PubMed |

Ribeiro, E. L. , Nielsen, M. K. , Bennett, G. L. , and Leymaster, K. A. (1997a). A simulation model including ovulation rate, potential embryonic viability, and uterine capacity to explain litter size in mice: I. Model development and implementation. J. Anim. Sci. 75, 641–651.
PubMed |

Ribeiro, E. L. , Nielsen, M. K. , Leymaster, K. A. , and Bennett, G. L. (1997b). A simulation model including ovulation rate, potential embryonic viability, and uterine capacity to explain litter size in mice: II. Responses to alternative criteria of selection. J. Anim. Sci. 75, 652–656.
PubMed |

Ruiz-Flores, A. , and Johnson, R. K. (2001). Direct and correlated responses to two-stage selection for ovulation rate and number of fully formed pigs at birth in swine. J. Anim. Sci. 79, 2286–2297.
PubMed |

Schneider, F. , Brussow, K. P. , Kanitz, E. , Otten, W. , and Tuchscherer, A. (2004). Maternal reproductive hormone levels after repeated ACTH application to pregnant gilts. Anim. Reprod. Sci. 81, 313–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schüler, L. (1985). Selection for fertility in mice: the selection plateau and how to overcome it. Theor. Appl. Genet. 70, 72–79.
Crossref | GoogleScholarGoogle Scholar |

Schüler, L. , and Bünger, L. (1982). Die reproduktive Lebensleistung auf Fruchtbarkeit selektierter Labormauslinien. Arch. Tierzucht 25, 275–281.


Simon, N. G. , Bridges, R. S. , and Gandelman, R. (1978). Correlation among foetal number, corpora lutea and plasma progesterone in Rockland-Swiss mice. Endokrinologie 72, 247–249.
PubMed |

Soares, M. J. , and Talamantes, F. (1983). Genetic and litter size effects on serum placental lactogen in the mouse. Biol. Reprod. 29, 165–171.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van Engelen, M. A. , Nielsen, M. K. , and Ribeiro, E. L. (1995). Differences in pup birth weight, pup variability within litters, and dam weight of mice selected for alternative criteria to increase litter size. J. Anim. Sci. 73, 1948–1953.
PubMed |

Walzel, H. , Brock, J. , Pohland, R. , Vanselow, J. , Tomek, W. , Schneider, F. , and Tiemann, U. (2004). Effects of galectin-1 on regulation of progesterone production in granulosa cells from pig ovaries in vitro. Glycobiology 14, 871–881.
Crossref | GoogleScholarGoogle Scholar | PubMed |