Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maternally derived transcripts: identification and characterisation during oocyte maturation and early cleavage

Xiang-Shun Cui A and Nam-Hyung Kim A B
+ Author Affiliations
- Author Affiliations

A National Research Laboratory of Molecular Embryology, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea.

B Corresponding author. Email: nhkim@chungbuk.ac.kr

Reproduction, Fertility and Development 19(1) 25-34 https://doi.org/10.1071/RD06128
Published: 12 December 2006

Abstract

The identification and characterisation of differentially regulated genes in oocytes and early embryos are required to understand the mechanisms involved in maturation, fertilisation, early cleavage and even long-term development. Several methods, including reverse transcription–polymerase chain reaction-based suppression subtractive hybridisation, differential display and cDNA microarray, have been applied to identify maternally derived genes in mammalian oocytes. However, conventional gene-knockout experiments to determine specific gene functions are labour intensive and inefficient. Recent developments include the use of RNA interference techniques to establish specific gene functions in mammalian oocytes and early embryos. Regulation of the poly(A) tail length is a major factor in controlling the activities of maternal transcripts in mammals. Further studies are required to clarify the mechanisms by which expression levels of maternally derived transcripts are regulated. In the present review, we focus on the identification and functions of the differentially expressed transcripts during oocyte maturation, fertilisation and early cleavage.

Extra keywords: gene expression, maternal genes.


Acknowledgments

The authors’ research reported herein was supported by The Korean Ministry of Science and Technology (National Research Laboratory Program to NHK) and The Ministry of Agriculture and Forestry (Bio-Organ Production Project and Agriculture R&D Center).


References

Bachvarova, R. (1985). Gene expression during oogenesis and oocyte development in mammals. Dev. Biol. 1, 453–524.


Bachvarova, R. F. (1992). A maternal tail of poly(A): the long and the short of it. Cell 69, 895–897.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Becker-Andre, M. , and Hahlbrock, K. (1989). Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 17, 9437–9446.
PubMed |

Bilodeau-Goeseels, S. , and Schultz, G. A. (1997). Changes in the relative abundance of various housekeeping gene transcripts in vitro-produced early bovine embryos. Mol. Reprod. Dev. 47, 413–420.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Blomberg, L. A. , and Zuelke, K. A. (2004). Serial analysis of gene expression (SAGE) during porcine embryo development. Reprod. Fertil. Dev. 16, 87–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brenner, C. A. , Tam, A. W. , Nelson, P. A. , Engleman, E. G. , Suzuki, N. , Fry, K. E. , and Larrick, J. W. (1989). Message amplification phenotyping (MAPPing): a technique to simultaneously measure multiple mRNAs from small numbers of cells. Biotechniques 7, 1096–1103.
PubMed |

Brevini-Gandolfi, T. A. , Favetta, L. A. , Mauri, L. , Luciano, A. M. , Cillo, F. , and Gandolfi, F. (1999). Changes in poly(A) tail length of maternal transcripts during in vitro maturation of bovine oocytes and their relation with developmental competence. Mol. Reprod. Dev. 52, 427–433.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brunet-Simon, A. , Henrion, G. , Renard, J. P. , and Duranthon, V. (2001). Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo. Mol. Reprod. Dev. 58, 127–136.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Burns, K. H. , Viveiros, M. M. , Ren, Y. , Wang, P. , DeMayo, F. J. , Frail, D. E. , Eppig, J. J. , and Matzuk, M. M. (2003). Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–636.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Calvert, M. E. , Digilio, L. C. , Herr, J. C. , and Coonrod, S. A. (2003). Oolemmal proteomics: identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane. Reprod. Biol. Endocrinol. 14, 1–27.


Carabatsos, M. J. , Elvin, J. , Matzuk, M. M. , and Albertini, D. F. (1998). Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev. Biol. 204, 373–384.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Charlesworth, A. , Cox, L. L. , and MacNicol, A. M. (2004). Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem. 279, 17 650–17 659.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Christians, E. , Boiani, M. , Garagna, S. , Dessy, C. , Redi, C. A. , Renard, J. P. , and Zuccotti, M. (1999). Gene expression and chromatin organization during mouse oocyte growth. Dev. Biol. 207, 76–85.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Christians, E. , Davis, A. A. , Thomas, S. D. , and Benjamin, I. J. (2000). Maternal effect of Hsf1 on reproductive success. Nature 407, 693–694.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Coonrod, S. A. , Calvert, M. E. , Reddi, P. P. , Kasper, E. N. , Digilio, L. C. , and Herr, J. C. (2004). Oocyte proteomics: localisation of mouse zona pellucida protein 3 to the plasma membrane of ovulated mouse eggs. Reprod. Fertil. Dev. 16, 69–78.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , Shin, M. R. , Lee, K. A. , and Kim, N. H. (2005a). Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol. Reprod. Dev. 70, 278–287.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , Song, H. , and Kim, N. H. (2005b). Identification of metaphse II specific gene transcripts in porcine oocytes and their expression in early stage embryos. Reprod. Fertil. Dev. 17, 625–632.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cui, X. S. , Li, X. Y. , Jeong, Y. J. , Jun, J. H. , and Kim, N. H. (2006). Gene expression of Cox 5a, 5b, or 6b1, and their roles in preimplantation mouse embryos. Biol. Reprod. 74, 601–610.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dade, S. , Callebaut, I. , Mermillod, P. , and Monget, P. (2003). Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte. FEBS Lett. 555, 533–538.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dade, S. , Callebaut, I. , Paillisson, A. , Bontoux, M. , Dalbies-Tran, R. , and Monget, P. (2004). In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte. Biochem. Biophys. Res. Commun. 324, 547–553.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dalbies-Tran, R. , and Mermillod, P. (2003). Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod. 68, 252–261.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dode, M. A. , Dufort, I. , Massicotte, L. , and Sirard, M. A. (2006). Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos. Mol. Reprod. Dev. 73, 288–297.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Donnison, M. , and Pfeffer, P. L. (2004). Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol. Reprod. 71, 1813–1821.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fan, H. Y. , and Sun, Q. Y. (2004). Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol. Reprod. 70, 375–383.


Fan, H. Y. , Huo, L. J. , Meng, X. Q. , Zhong, Z. S. , Hou, Y. , Chen, D. Y. , and Sun, Q. Y. (2003). Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biol. Reprod. 69, 1552–1564.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15, 358–363.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gebauer, F. , and Richter, J. D. (1996). Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc. Natl Acad. Sci. USA 93, 14 602–14 607.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gosden, R. G. (2002). Oogenesis as a foundation for embryogenesis. Mol. Cell. Endocrinol. 186, 149–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grabarek, J. B. , Plusa, B. , Glover, D. M. , and Zernicka-Goetz, M. (2002). Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by electroporation. Genesis 32, 269–276.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gurtu, V. E. , Verma, S. , Grossmann, A. H. , Liskay, R. M. , Skarnes, W. C. , and Baker, S. M. (2002). Maternal effect for DNA mismatch repair in the mouse. Genetics 160, 271–277.
PubMed |

Hale, J. E. , Gelfanova, V. , Ludwig, J. R. , and Kniermen, M. D. (2003). Application of proteomics for discovery of protein biomarkers. Brief. Funct. Genom. Proteom. 2, 185–193.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hamatani, T. , Daikoku, T. , Wang, H. , Matsumoto, H. , Carter, M. G. , Ko, M. S. , and Dey, S. K. (2004). Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl Acad. Sci. USA 101, 10 326–10 331.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hartshorn, C. , Rice, J. E. , and Wangh, L. J. (2002). Developmentally-regulated changes of Xist RNA levels in single preimplantation mouse embryos, as revealed by quantitative real-time PCR. Mol. Reprod. Dev. 61, 425–436.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hayashi, S. , Yang, J. , Christenson, L. , Yanagimachi, R. , and Hecht, N. B. (2003). Mouse preimplantation embryos developed from oocytes injected with round spermatids or spermatozoa have similar but distinct patterns of early messenger RNA expression. Biol. Reprod. 69, 1170–1176.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Henrion, G. , Brunet, A. , Renard, J. P. , and Duranthon, V. (1997). Identification of maternal transcripts that progressively disappear during the cleavage period of rabbit embryos. Mol. Reprod. Dev. 47, 353–362.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Higuchi, R. , Fockler, C. , Dollinger, G. , and Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplificate ion reactions. Biotechnology 11, 1026–1030.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Howell, C. Y. , Bestor, T. H. , Ding, F. , Latham, K. E. , Mertineit, C. , Trasler, J. M. , and Chaillet, J. R. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–838.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Huarte, J. , Belin, D. , Vassalli, A. , Strickland, S. , and Vassalli, J. D. (1987). Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev. 1, 1201–1211.
PubMed |

Hwang, I. T. , Kim, Y. J. , Kim, S. H. , Kwak, C. I. , Gu, Y. Y. , and Chun, J. Y. (2003). Annealing control primer system for improving specificity of PCR amplification. Biotechniques 35, 1180–1184.
PubMed |

Hwang, K. C. , Cui, X. S. , Park, S. P. , Shin, M. R. , Park, S. Y. , Kim, E. Y. , and Kim, N. H. (2004). Identification of differentially regulated genes in bovine blastocysts using an annealing control primer system. Mol. Reprod. Dev. 69, 43–51.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hwang, K. C. , Lee, H. Y. , Cui, X. S. , Kim, J. H. , and Kim, N. H. (2005a). Identification of maternal mRNAs in porcine parthenotes at the 2-cell stage: a comparison with the blastocyst stage. Mol. Reprod. Dev. 70, 314–323.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hwang, K. C. , Park, S. Y. , Park, S. P. , Lim, J. H. , Cui, X. S. , and Kim, N. H. (2005b). Specific maternal transcripts in bovine oocytes and cleavaged embryos: identification with novel DDRT-PCR methods. Mol. Reprod. Dev. 71, 275–283.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jeong, Y. J. , Choi, H. W. , Shin, H. S. , Cui, X. S. , Kim, N. H. , Gerton, G. L. , and Jun, J. H. (2005). Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol. Reprod. Dev. 71, 284–289.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Katz-Jaffe, M. G. , Gardner, D. K. , and Schoolcraft, W. B. (2006). Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil. Steril. 85, 101–107.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kim, M. H. , Yuan, X. , Okumura, S. , and Ishikawa, F. (2002). Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs. Biochem. Biophys. Res. Commun. 296, 1372–1377.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kim, N. H. , Funahashi, H. , Prather, R. S. , Schatten, G. , and Day, B. N. (1996a). Microtubule and microfilament dynamics in porcine oocytes during meiotic maturation. Mol. Reprod. Dev. 43, 248–255.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kim, N. H. , Moon, S. J. , Prather, R. S. , and Day, B. N. (1996b). Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol. Reprod. Dev. 43, 513–518.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kim, N. H. , Simerly, C. , Funahashi, H. , Schatten, G. , and Day, B. N. (1996c). Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol. Reprod. 54, 1397–1404.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Koo, D. B. , Chae, J. I. , Kim, J. S. , Wee, G. , Song, B. S. , Lee, K. K. , and Han, Y. M. (2005). Inactivation of MPF and MAP kinase by single electrical stimulus for parthenogenetic development of porcine oocytes. Mol. Reprod. Dev. 72, 542–549.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lee, E. , Lein, E. S. , and Firestone, G. L. (2001). Tissue-specific expression of the transcriptionally regulated serum and glucocorticoid-inducible protein kinase (Sgk) during mouse embryogenesis. Mech. Dev. 103, 177–181.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lee, H. Y. , Cui, X. S. , Lee, K. A. , and Kim, N. H. (2006). Annealing control primer system identifies differentially expressed genes in blastocyst-stage porcine parthenotes. Zygote 14, 71–80.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lequarre, A. S. , Traverso, J. M. , Marchandise, J. , and Donnay, I. (2004). Poly(A) RNA is reduced by half during bovine oocyte maturation but increases when meiotic arrest is maintained with CDK inhibitors. Biol. Reprod. 71, 425–431.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liang, L. , Soyal, S. M. , and Dean, J. (1997). FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 124, 4939–4947.
PubMed |

Liang, P. , and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.
PubMed |

Lindeberg, M. , Hovatta, O. , and Ahrlund-Richter, L. (2004). Real-time reverse transcription-polymerase chain reaction analysis of translation initiation factor 1A (eIF-1A) in human and mouse preimplantation embryos. Reprod. Biomed. Online 8, 338–343.
PubMed |

Ma, J. , Zeng, F. , Schultz, R. M. , and Tseng, H. (2006). Basonuclin: a novel mammalian maternal-effect gene. Development 133, 2053–2062.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matzuk, M. M. , and Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nat. Cell Biol. 4(Suppl.), S33–S40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Merchant, M. , and Weinberger, S. R. (2000). Recent advancements in surface-enhanced laser desorption/ionization–time of flight–mass spectrometry. Electrophoresis 21, 1164–1177.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Minami, N. , Aizawa, A. , Ihara, R. , Miyamoto, M. , Ohashi, A. , and Imai, H. (2003). Oogenesin is a novel mouse protein expressed in oocytes and early cleavage-stage embryos. Biol. Reprod. 69, 1736–1742.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mohan, M. , Ryder, S. , Claypool, P. L. , Geisert, R. D. , and Malayer, J. R. (2002). Analysis of gene expression in the bovine blastocyst produced in vitro using suppression–subtractive hybridization. Biol. Reprod. 67, 447–453.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mohan, M. , Hurst, A. G. , and Malayer, J. R. (2004). Global gene expression analysis comparing bovine blastocysts flushed on day 7 or produced in vitro. Mol. Reprod. Dev. 68, 288–298.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Morrison, T. B. , Weis, J. J. , and Wittwer, C. (1998). Quantification of low-copy transcripts by continuous SYBR green I monitoring during amplification. Biotechniques 24, 954–962.
PubMed |

Natale, D. R. , De Sousa, P. A. , Westhusin, M. E. , and Watson, A. J. (2001). Sensitivity of bovine blastocyst gene expression patterns to culture environments assessed by differential display RT-PCR. Reproduction 122, 687–693.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Neilson, L. , Andalibi, A. , Kang, D. , Coutifaris, C. , Strauss, J. F. , Stanton, J. A. , and Green, D. P. (2000). Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63, 13–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nothias, J. Y. , Majumder, S. , Kaneko, K. J. , and DePamphilis, M. L. (1995). Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22 077–22 080.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pacheco-Trigon, S. , Hennequet-Antier, C. , Oudin, J. F. , Piumi, F. , Renard, J. P. , and Duranthon, V. (2002). Molecular characterization of genomic activities at the onset of zygotic transcription in mammals. Biol. Reprod. 67, 1907–1918.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Paillisson, A. , Dade, S. , Callebaut, I. , Bontoux, M. , Dalbies-Tran, R. , Vaiman, D. , and Monget, P. (2005). Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics 6, 76.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Payer, B. , Saitou, M. , Barton, S. C. , Thresher, R. , Dixon, J. P. , Zahn, D. , Colledge, W. H. , Carlton, M. B. , Nakano, T. , and Surani, M. A. (2003). Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Paynton, B. V. , and Bachvarova, R. (1994). Polyadenylation and deadenylation of maternal mRNAs during oocyte growth and maturation in the mouse. Mol. Reprod. Dev. 37, 172–180.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Paynton, B. V. , Rempel, R. , and Bachvarova, R. (1988). Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev. Biol. 129, 304–314.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Piccioni, F. , Zappavigna, V. , and Verrotti, A. C. (2005). Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328, 863–881.
PubMed |

Ponsuksili, S. , Tesfaye, D. , El-Halawany, N. , Schellander, K. , and Wimmers, K. (2002). Stage-specific expressed sequence tags obtained during preimplantation bovine development by differential display RT-PCR and suppression subtractive hybridization. Prenat. Diagn. 22, 1135–1142.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ramos, S. B. , Stumpo, D. J. , Kennington, E. A. , Phillips, R. S. , Bock, C. B. , Ribeiro-Neto, F. , and Blackshear, P. J. (2004). The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131, 4883–4893.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rappolee, D. A. , Brenner, C. A. , Schultz, R. M. , and Werb, Z. (1988). Developmental expression of PDGF, TGF-α and TGF-β genes in preimplantation mouse embryos. Science 241, 1823–1825.
PubMed |

Robert, C. , Barnes, F. L. , Hue, I. , and Sirard, M. A. (2000). Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. Mol. Reprod. Dev. 57, 167–175.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Robert, C. , McGraw, S. , Massicotte, L. , Pravetoni, M. , Gandolfi, F. , and Sirard, M. A. (2002). Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biol. Reprod. 67, 1465–1472.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schena, M. , Shalon, D. , Davis, R. W. , and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.
PubMed |

Seli, E. , Lalioti, M. D. , Flaherty, S. M. , Sakkas, D. , Terzi, N. , and Steitz, J. A. (2005). An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc. Natl Acad. Sci. USA 102, 367–372.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shankar, R. , Gude, N. , Cullinane, F. , Brennecke, S. , Purcell, A. W. , and Moses, E. K. (2005). An emerging role for comprehensive proteome analysis in human pregnancy research. Reproduction 129, 685–696.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sharp, P. A. (2001). RNA interference: 2001. Genes Dev. 15, 485–490.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shin, M. R. , Cui, X. S. , Jun, J. H. , Jeong, Y. J. , and Kim, N. H. (2005). Identification of mouse blastocyst genes that are downregulated by double-stranded RNA-mediated knockdown of Oct-4 expression. Mol. Reprod. Dev. 70, 390–396.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Siebert, V. , Wiesner, A. , Buschmann, T. , and Meuer, J. (2004). Surface-enhanced laser desorption ionization time-of-flight (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol. Res. Pract. 200, 83–94.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Soyal, S. M. , Amleh, A. , and Dean, J. (2000). FIGα, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127, 4645–4654.
PubMed |

Stanton, J. L. , Bascand, M. , Fisher, L. , Quinn, M. , Macgregor, A. , and Green, D. P. (2002). Gene expression profiling of human GV oocytes: an analysis of a profile obtained by serial analysis of gene expression (SAGE). J. Reprod. Immunol. 53, 193–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steuerwald, N. , Cohen, J. , Herrera, R. J. , and Brenner, C. A. (1999). Analysis of gene expression in single oocytes and embryos by real-time rapid cycle fluorescence monitored RT-PCR. Mol. Hum. Reprod. 5, 1034–1039.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steuerwald, N. , Barritt, J. A. , Adler, R. , Malter, H. , Schimmel, T. , Cohen, J. , and Brenner, C. A. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitores PCR. Zygote 8, 209–215.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stieger, M. , Demolliere, C. , Ahlborn-Laake, L. , and Mous, J. (1991). Competitive polymerase chain reaction assay for quantitation of HIV-1 DNA and RNA. J. Virol. Methods 34, 149–160.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Strickland, S. , Huarte, J. , Belin, D. , Vassalli, A. , Rickles, R. J. , and Vassalli, J. D. (1988). Antisense RNA directed against the 30 noncoding region prevents dormant mRNA activation in mouse oocytes. Science 241, 680–684.
PubMed |

Sun, X. , Meyers, E. N. , Lewandoski, M. , and Martin, G. R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846.
PubMed |

Sutovsky, P. , Manandhar, G. , Laurincik, J. , Letko, J. , and Caamano, J. N. , et al. (2005). Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction 129, 269–282.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suzuki, T. , Higgins, P. J. , and Crawford, D. R. (2000). Control selection for RNA quantitation. Biotechniques 29, 332–337.
PubMed |

Svoboda, P. , Stein, P. , Hayashi, H. , and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156.
PubMed |

Tanaka, T. S. , and Ko, M. S. H. (2004). A global view of gene expression in the preimplantation mouse embryo: morula versus blastocyst. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S85–S91.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tesfaye, D. , Ponsuksili, S. , Wimmers, K. , Gilles, M. , and Schellander, K. (2003). Identification and quantification of differentially expressed transcripts in in vitro-produced bovine preimplantation stage embryos. Mol. Reprod. Dev. 66, 105–114.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl Acad. Sci. USA 77, 5201–5205.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tong, Z. B. , Gold, L. , Pfeifer, K. E. , Dorward, H. , Lee, E. , Bondy, C. A. , Dean, J. , and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tong, Z. B. , Gold, L. , De Pol, A. , Vanevski, K. , Dorward, H. , Sena, P. , Palumbo, C. , Bondy, C. A. , and Nelson, L. M. (2004). Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145, 1427–1434.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tremblay, K. , Vigneault, C. , McGraw, S. , and Sirard, M. A. (2005). Expression of cyclin B1 messenger RNA isoforms and initiation of cytoplasmic polyadenylation in the bovine oocyte. Biol. Reprod. 72, 1037–1044.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vallee, M. , Gravel, C. , Palin, M. F. , Reghenas, H. , Stothard, P. , Wishart, D. S. , and Sirard, M. A. (2005). Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod. 73, 63–71.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Valve, E. , Penttila, T. L. , Paranko, J. , and Harkonen, P. (1997). FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem. Biophys. Res. Commun. 232, 173–177.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. (1991). Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl Acad. Sci. USA 88, 5031–5035.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Varnum, B. C. , Ma, Q. , Chi, T. , Fletcher, B. , and Herschman, H. R. (1991). The TIS11 primary response gene is a member of a gene family that encodes proteins with highly conserved sequence containing an unusual cys-his repeats. Mol. Cell. Biol. 11, 1754–1758.
PubMed |

Vassalli, J. D. , Huarte, J. , Belin, D. , Gubler, P. , Vassalli, A. , O’Connell, M. L. , Parton, L. A. , Rickles, R. J. , and Strickland, S. (1989). Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev. 3, 2163–2171.
PubMed |

Villa-Diaz, L. G. , and Miyano, T. (2004). Activation of p38 MAPK during porcine oocyte maturation. Biol. Reprod. 71, 691–696.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, A. M. , Doyle, M. V. , and Mark, D. F. (1989). Quantitation of mRNA by the polymerase chain reaction. Proc. Natl Acad. Sci. USA 86, 9717–9721.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, Q. T. , Piotrowska, K. , Ciemerych, M. A. , Milenkovic, L. , Scott, M. P. , Davis, R. W. , and Zernicka-Goetz, M. (2004). A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144.
Crossref | GoogleScholarGoogle Scholar | PubMed |

White, B. A. , and Bancroft, F. C. (1982). Cytoplasmic dot hybridization. J. Biol. Chem. 257, 8569–8572.
PubMed |

Whitworth, K. , Springer, G. K. , Forrester, L. J. , Spollen, W. G. , and Ries, J. , et al. (2004). Developmental expression of 2489 gene clusters during pig embryogenesis: an expressed sequence tag project. Biol. Reprod. 71, 1230–1243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitworth, K. M. , Agca, C. , Kim, J. G. , Patel, R. V. , Springer, G. K. , Bivens, N. J. , Forrester, L. J. , Mathialagan, N. , Green, J. A. , and Prather, R. S. (2005). Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72, 1437–1451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wianny, F. , and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wu, X. , Viveiros, M. M. , Eppig, J. J. , Bai, Y. , Fitzpatrick, S. L. , and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xiao, Z. , Prieto, D. , Conrads, T. P. , Veenstra, T. D. , and Issaq, H. J. (2005). Proteomic patterns: their potential for disease diagnosis. Mol. Cell. Endocrinol. 230, 95–106.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoon, S. J. , Chung, H. M. , Cha, K. Y. , Kim, N. H. , and Lee, K. A. (2005). Identification of differential gene expression in germinal vesicle vs. metaphase II mouse oocytes by using annealing control primers. Fertil. Steril. 83((Suppl. 1)), 1293–1296.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yu, J. , Deng, M. , Medvedev, S. , Yang, J. , Hecht, N. B. , and Schultz, R. M. (2004). Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Dev. Biol. 268, 195–206.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeng, F. , and Schultz, R. M. (2003). Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68, 31–39.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeng, F. , Baldwin, D. A. , and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.
Crossref | GoogleScholarGoogle Scholar | PubMed |