Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Slow cooling prevents cold-induced damage to sperm motility and acrosomal integrity in the black-footed ferret (Mustela nigripes)

R. M. Santymire A D E F , P. E. Marinari B , J. S. Kreeger B , D. E. Wildt A and J. G. Howard C
+ Author Affiliations
- Author Affiliations

A Department of Reproductive Sciences, Conservation & Research Centre, Smithsonian’s National Zoological Park, Front Royal, VA 22630, USA.

B US Fish & Wildlife Service, National Black-Footed Ferret Conservation Centre, Wellington, CO 80549, USA.

C Department of Reproductive Sciences, Smithsonian’s National Zoological Park, Washington, DC 20008, USA.

D Department of Environment Science and Policy, George Mason University, Fairfax, VA 22030, USA.

E Present address: Department of Conservation & Science, Lincoln Park Zoo, Chicago, IL 60614, USA.

F Corresponding author. Email: rsantymire@lpzoo.org

Reproduction, Fertility and Development 19(5) 652-663 https://doi.org/10.1071/RD06096
Submitted: 10 July 2006  Accepted: 26 March 2007   Published: 1 June 2007

Abstract

The endangered black-footed ferret (Mustela nigripes) has benefited from artificial insemination; however, improved sperm cryopreservation protocols are still needed. The present study focused on identifying factors influencing gamete survival during processing before cryopreservation, including: (1) the presence or absence of seminal plasma; (2) temperature (25°C v. 37°C); (3) type of medium (Ham’s F10 medium v. TEST yolk buffer [TYB]); (4) cooling rate (slow, rapid and ultra-rapid); and (5) the presence or absence of glycerol. Seminal plasma did not compromise (P > 0.05) sperm motility or acrosomal integrity. Sperm motility traits were maintained longer (P < 0.05) at 25°C than at 37°C in Ham’s or TYB, but temperature did not affect (P > 0.05) acrosomal integrity. Overall, TYB maintained optimal (P < 0.05) sperm motility compared with Ham’s medium, but Ham’s medium maintained more (P < 0.05) intact acrosomes than TYB. Slow cooling (0.2°C min–1) was optimal (P < 0.05) compared to rapid cooling (1°C min–1), and ultra-rapid cooling (9°C min–1) was found to be highly detrimental (P < 0.05). Results obtained in TYB with 0% or 4% glycerol were comparable (P > 0.05), indicating that 4% glycerol was non-toxic to ferret sperm; however, glycerol failed to ameliorate the detrimental effects of either rapid or ultra-rapid cooling. The results of the present study demonstrate that the damage observed to black-footed ferret spermatozoa is derived largely from the rate of cooling.

Additional keywords: assisted reproduction, conservation, genome resource banking, mustelid.


Acknowledgements

The authors thank Dr Mitchell Bush for veterinary care, Lisa Ware for veterinary technical support and the animal care staff of the US Fish and Wildlife Service-National Black-Footed Ferret Conservation Centre and the National Zoological Park’s Conservation & Research Centre for valuable assistance. The authors are especially grateful to Lena May Bush, Linwood Williamson, Lawrence Layman, Robb Santymire and Bobby Rodden for dedicated assistance. This research was supported by the Nelson Endowment Fund and Friends of the National Zoo.


References

Aboagla, E. M.-E. , and Terada, T. (2004). Effects of egg yolk during the freezing step of cryopreservation on the viability of goat spermatozoa. Theriogenology 62, 1160–1172.
Crossref | GoogleScholarGoogle Scholar | PubMed | Atherton R. W., Straley M., Curry P., Slaughter R., Burgess W., and Kitchin R. M. (1989). Electroejaculation and cryopreservation of domestic ferret sperm. In ‘Conservation Biology of the Black-Footed Ferret’. (Eds U. S. Seal, E. T. Thorne, S. H. Anderson and M. A. Bodan.) pp. 177–189. (Yale University Press: New Haven.)

Aurich, J. E. , Kuhne, A. , Hoppe, H. , and Aurich, C. (1996). Seminal plasma affects membrane integrity and motility of equine spermatozoa after cryopreservation. Theriogenology 46, 791–797.
Crossref | GoogleScholarGoogle Scholar | PubMed | Holt W. V., Abaigar T., Watson P. F., and Wildt D. E. (2003). Genetic resource banks for species conservation. In ‘Reproductive Science and Integrated Conservation’. (Eds W. V. Holt, A. R. Pickard, J. C. Rodger and D. E. Wildt.) pp. 267–280. (Cambridge University Press: Cambridge.)

Howard J. G. (1992). Feline semen analysis and artificial insemination. In ‘Current Veterinary Therapy XI’. (Ed. R. W. Kirk.) pp. 929–938. (WB Saunders: Philadelphia.)

Howard J. G. (1993). Semen collection and analysis in nondomestic carnivores. In ‘Zoo and Wild Animal Medicine: Current Therapy III’. (Ed. M. E. Fowler.) pp. 390–399. (WB Saunders: Philadelphia.)

Howard J. G., Bush M., and Wildt D. E. (1986). Semen collection, analysis and cryopreservation in nondomestic mammals. In ‘Current Therapy in Theriogenology’. (Ed. D. Morrow.) pp. 1047–1053. (WB Saunders: Philadelphia.)

Howard, J. G. , Bush, M. , Morton, C. , Morton, F. , and Wildt, D. E. (1991). Comparative semen cryopreservation in ferrets (Mustela putorius furo) and pregnancies after laparoscopic intrauterine insemination with frozen–thawed spermatozoa. J. Reprod. Fertil. 92, 109–118.
PubMed | Howard J. G., Wolf K. N., Vargas A., Marinari P., Kreeger J., Williamson L., and Wildt D. E. (1997). Enhanced reproductive efficiency and pregnancies after artificial insemination in black-footed ferrets. In ‘Proceedings of the American Association of Zoo Veterinarians’. (Ed. American Association of Zoo Veterinarians.) pp. 351–352. (American Association of Zoo Veterinarians: Houston, TX.)

Howard J. G., Marinari P. E., and Wildt D. E. (2003). Black-footed ferret: model for assisted reproductive technologies contributing to in situ conservation. In ‘Reproductive Science and Integrated Conservation’. (Eds W. V. Holt, A. R. Pickard, J. C. Rodger and D. E. Wildt.) pp. 249–266. (Cambridge University Press: Cambridge.)

Howard J. G., Santymire R. M., Marinari P. E., Kreeger J. S., Williamson L., and Wildt D. E. (2006). Use of reproductive technology for black-footed ferret recovery. In ‘U.S. Geological Survey Scientific Investigations Report 2005–5293’. (Eds J. E. Roelle, B. J. Miller, J. L. Godbey and D. E. Biggin.) pp. 28–36. (US Geological Survey: Reston, VA.)

Iwamoto, T. , and Gagnon, C. (1988). Purification and characterization of a sperm motility inhibitor in human seminal plasma. J. Androl. 9, 377–383.
PubMed | Parks J. E. (1997). Hypothermia and mammalian gametes. In ‘Reproductive Tissue Banking’. (Eds A. M. Karow and J. K. Critser.) pp. 229–261. (Academic Press: San Diego.)

Pukazhenthi, B. S. , Pelican, K. , Wildt, D. , and Howard, J. (1999). Sensitivity of domestic cat (Felis catus) sperm from normospermic versus teratospermic donors to cold-induced acrosomal damage. Biol. Reprod. 61, 135–141.
Crossref | GoogleScholarGoogle Scholar | PubMed | Watson P. F. (1979). The preservation of semen in mammals. In ‘Oxford Reviews of Reproductive Biology’. (Ed. C. A. Finn.) pp. 283–350. (Oxford University Press: London.)

Watson, P. F. (1995). Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7, 871–891.
Crossref | GoogleScholarGoogle Scholar | PubMed | Wildt D. E. (1997). Genome resource banking: impact on biotic conservation and society. In ‘Reproductive Tissue Banking’. (Eds A. M. Karow and J. K. Critser.) pp. 399–439. (Academic Press: San Diego.)

Wildt D. E., and Goodrowe K. (1989). The potential for embryo technology in the black-footed ferret. In ‘Conservation Biology and the Black-Footed Ferret’. (Eds U. S. Seal, E. T. Thorne, M. A. Bogan and S. H. Anderson.) pp. 160–176. (Yale University Press: New Haven.)

Wildt, D. E. , Bush, M. , Morton, C. , Morton, F. , and Howard, J. G. (1989). Semen characteristics and testosterone profiles in ferrets kept in long-day photoperiod, and the influence of hCG timing and sperm dilution on pregnancy rate after laparoscopic insemination. J. Reprod. Fertil. 86, 349–358.
PubMed |

Wildt, D. E. , Rall, W. F. , Critser, J. K. , Monfort, S. L. , and Seal, U. S. (1997). Genome resource banks: living collections for biodiversity conservation. Bioscience 47, 689–698.
Crossref | GoogleScholarGoogle Scholar |

Wolf, K. N. , Wildt, D. E. , Vargas, A. , Marinari, P. E. , Kreeger, J. S. , Ottinger, M. A. , and Howard, J. G. (2000a). Age dependent changes in sperm production, semen quality and testicular volume in black-footed ferrets (Mustela nigripes). Biol. Reprod. 63, 179–187.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wolf, K. N. , Wildt, D. E. , Vargas, A. , Marinari, P. E. , Ottinger, M. A. , and Howard, J. G. (2000b). Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biol. 19, 517–528.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yogev, L. , Homonnai, Z. T. , Gamzu, R. , Amit, A. , Lessing, J. B. , Paz, G. , and Yavetz, H. (1995). The use of hemizona assay in the evaluation of the optimal sperm preparation technique. Hum. Reprod. 10, 851–854.
PubMed |