Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Somatic cell nuclear transfer in pigs: recent achievements and future possibilities

Gábor Vajta A D , Yunhai Zhang A B and Zoltán Macháty C
+ Author Affiliations
- Author Affiliations

A Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.

B College of Animal Sciences and Technology, Anhui Agricultural University, Hefei City, Anhui Province 230036, China.

C Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.

D Corresponding author. Email: gabor.vajta@agrsci.dk

Reproduction, Fertility and Development 19(2) 403-423 https://doi.org/10.1071/RD06089
Submitted: 30 August 2006  Accepted: 24 October 2006   Published: 29 January 2007

Abstract

During the past 6 years, considerable advancement has been achieved in experimental embryology of pigs. This process was mainly generated by the rapidly increasing need for transgenic pigs for biomedical research purposes, both for future xenotransplantation to replace damaged human organs or tissues, and for creating authentic animal models for human diseases to study aetiology, pathogenesis and possible therapy. Theoretically, among various possibilities, an established somatic cell nuclear transfer system with genetically engineered donor cells seems to be an efficient and reliable approach to achieve this goal. However, as the result of unfortunate coincidence of known and unknown factors, porcine embryology had been a handicapped branch of reproductive research in domestic animals and a very intensive and focused research was required to eliminate or minimise this handicap. This review summarises recent achievements both in the background technologies (maturation, activation, embryo culture) and the actual performance of the nuclear replacement. Recent simplified methods for in vivo development after embryo transfer are also discussed. Finally, several fields of potential application for human medical purposes are discussed. The authors conclude that although in this early phase of research no direct evidence can be provided about the practical use of transgenic pigs produced by somatic cell nuclear transfer as organ donors or disease models, the future chances even in medium term are good, and at least proportional with the efforts and sums that are invested into this research area worldwide.

Additional keywords: disease model, porcine, transgenic, xenotransplantation.


Acknowledgements

The authors thank Cesare Galli, Irina Lagutina, Heiner Niemann, Randall S. Prather, Rongfeng Li, Scott Davis, Yutao Du, Li Juan, and Teija T. Peura for supporting this review by sharing their unpublished data with us.


References

Abeydeera, L. R. (2002). In vitro production of embryos in swine. Theriogenology 57, 257–273.
Crossref | GoogleScholarGoogle Scholar | PubMed | Andersson L. (2005). Historical perspective biology of the pig and relevance to medicine. In ‘Proceedings of the Swine in Biomedical Research Conference’, 27–29 Januray 2005, Chicago, IL. p. 39.

Bauer, A. , Baschnegger, H. , Abicht, J. M. , Brandl, U. , and Brenner, P. , et al. (2005). hDAF procine cardiac xenograft maintains cardiac output after orthotopic transplantation into baboon – a perioperative study. Xenotransplantation 12, 444–449.
Crossref | GoogleScholarGoogle Scholar | PubMed | Day B., Abeydeera L., and Prather R. (2000). Recent progress in pig embryo production through in vitro maturation and feritilization techniques. In ‘Proceedings IV International Conference on Boar Semen Preservation’. (Eds G. La and H. D. Johnson.) pp. 81–92. (Allen Press: Lawrence, KS.)

Deacon, T. , Schumacher, J. , Dinsmore, J. , Thomas, C. , and Palmer, P. , et al. (1997). Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med. 3, 350–353.
Crossref | GoogleScholarGoogle Scholar | PubMed | Forsberg E. J. (2005). Genetically modified swine. In ‘Proceedings of the Swine in Biomedical Research Conference’, 27–29 January 2005, Chicago, IL. p. 40.

Fujimura, T. , Kurome, M. , Murakami, H. , Takahagi, Y. , and Matsunami, K. , et al. (2004). Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6, 294–301.
PubMed | Li N., Lian Z., Pei D. Z., Zhang X., Zhang Q., and Zhao X. (2005). Chinese experimental pig models for human disease and xenotransplantation. In ‘Proceedings of the Swine in Biomedical Research Conference’, 27–29 January 2005, Chicago, IL. p. 22.

Li, R. , Lai, L. , Wax, D. , Hao, Y. , and Murphy, C. , et al. (2006). Cloned transgenic swine via in vitro production and cryopreservation. Biol. Reprod. 75, 226–230.
Crossref | GoogleScholarGoogle Scholar | PubMed | Swanson K., Kuzmuk K., Meyers S., Beever J., Adams S., et al. (2005). Swine in biomedical research. In ‘Proceedings of the Swine in Biomedical Research Conference’, 27–29 January 2005, Chicago, IL. pp. 42–43.

Switzer, W. M. , Michler, R. E. , Shanmugan, V. , Matthews, A. , and Hussain, A. I. , et al. (2001). Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues and organs. Transplantation 71, 959–965.
Crossref | GoogleScholarGoogle Scholar | PubMed | Wernersson R., Shierup M. H., Jørgensen F. G., Gorodkin J., Panitz F., et al. (2005). Pigs in sequence space: a 0.66x coverage Sino-Danish pig genome survey. In ‘Proceedings of the Swine in Biomedical Research Conference’, 27–29 January 2005, Chicago, IL. p. 27.

Wheeler, M. B. , Clark, S. G. , and Beebe, D. J. (2004). Developments in in vitro technologies for swine embryo production. Reprod. Fertil. Dev. 16, 15–25.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitaker, M. (2006). Calcium at fertilization and in early development. Physiol. Rev. 86, 25–88.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilmut, I. , Beaujean, N. , de Sousa, P. A. , Dinnyes, A. , King, T. J. , Paterson, L. A. , Wells, D. N. , and Young, L. E. (2002). Somatic cell nuclear transfer. Nature 419, 583–586.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wongsrikeao, P. , Otoi, T. , Karja, N. W. , Agung, B. , Nii, M. , and Nagai, T. (2005). Effects of ovary storage time and temperature on DNA fragmentation and development of porcine oocytes. J. Reprod. Dev. 51, 87–97.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wongsrikeao, P. , Otoi, T. , Yamasaki, H. , Agung, B. , Taniguchi, M. , Naoi, H. , Shimizu, R. , and Nagai, T. (2006). Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. Theriogenology 66, 366–372.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wu, G. M. , Lai, L. , Mao, J. , McCauley, T. C. , and Caamano, J. N. , et al. (2004). Birth of piglets by in vitro fertilization of zona-free porcine oocytes. Theriogenology 62, 1544–1556.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamada, K. , Yazawa, K. , Shimizu, A. , Iwanaga, T. , and Hisashi, Y. , et al. (2005). Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha-1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11, 32–34.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yang, Y. G. , Wood, J. C. , Lan, P. , Wilkinson, R. A. , Sykes, M. , Fishman, J. A. , and Patience, C. (2004). Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice. J. Clin. Invest. 114, 695–700.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yin, X. J. , Tani, T. , Yonemura, I. , Kawakami, M. , Miyamoto, K. , Hasegawa, R. , Kato, Y. , and Tsunoda, Y. (2002). Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67, 442–446.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yin, X.J. , Cho, S.K. , Park, M.R. , Im, Y.J. , and Park, J.J. , et al. (2003). Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. Zygote 11, 167–174.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoneda, A. , Suzuki, K. , Mori, T. , Ueda, J. , and Watanabe, T. (2004). Effects of delipidation and oxygen concentration on in vitro development of porcine embryos. J. Reprod. Dev. 50, 287–295.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoon, K. W. , Shin, T. Y. , Park, J. I. , Roh, S. , Lim, J. M. , Lee, B. C. , Hwang, W. S. , and Lee, E. S. (2000). Development of porcine oocytes from preovulatory follicles of different sizes after maturation in media supplemented with follicular fluids. Reprod. Fertil. Dev. 12, 133–139.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshioka, K. , Suzuki, C. , Tanaka, A. , Anas, I. M. , and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Young, L. E. , Sinclair, K. D. , and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, L. , Li, Y. , Liu, J. , Zeng, Y. , Zeng, R. , and Cheng, J. (2004). Activation of human coagulation system by liver-derived clotting factors of Banna Minipig Inbred line. Transplant. Proc. 36, 2490–2491.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, L. , Li, Y. , Jiang, H. , Liu, J. , Zeng, Y. , and Cheng, J. (2005). Comparison of hepatic coagulant, fibrinolytic, and anticoagulant functions between Banna Minipig Inbred line and humans. Transplantation 79, 1128–1131.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, Y.H. , Pan, D.K. , Sun, X.Z. , Sun, G.J. , Wang, X.B. , Liu, X.H. , Li, Y. , Dai, Y.P. , and Li, N. (2006). Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer. Sci. China Ser. C Sci. 49, 164.
Crossref | GoogleScholarGoogle Scholar |

Zhu, M. , Wang, S. S. , Xia, Z. X. , Cao, R. H. , Chen, D. , Huang, Y. B. , Liu, B. , Chen, Z. K. , and Chen, S. (2005). Inhibition of xenogeneic response in porcine endothelium using RNA interference. Transplantation 79, 289–296.
Crossref | GoogleScholarGoogle Scholar | PubMed |