Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Derivation of human embryonic stem cell lines, towards clinical quality

Outi Hovatta
+ Author Affiliations
- Author Affiliations

Karolinska Institutet, Karolinska University Hospital Huddinge, SE 141 86, Stockholm, Sweden. Email: outi.hovatta@ki.se

Reproduction, Fertility and Development 18(8) 823-828 https://doi.org/10.1071/RD06075
Submitted: 31 May 2006  Accepted: 4 September 2006   Published: 22 November 2006

Abstract

Human embryonic stem (hES) cells offer an excellent source of cells for transplantation in the treatment of severe diseases. To be clinically safe, the lines have to be derived using strict quality criteria and good manufacturing practice. Animal proteins are immunogenic and may contain microbes, and they should not be used in establishing or propagating hES cells. Derivation systems have been improved towards clinical quality by establishing all 25 hES cell lines using human skin fibroblasts as feeder cells instead of mouse fibroblasts. A further 21 cell lines have been established using synthetic serum instead of fetal calf serum in the medium. In the five latest derivations, the inner cell mass was isolated mechanically instead of by immunosurgery (animal antibodies). Feeder-free derivation would be optimal, but it is not yet considered safe. Clinical-quality lines can be derived by establishing the skin fibroblast feeders in the good manufacturing practice laboratory with human serum in the medium, and by establishing the hES cells on such feeders. In this process, a serum replacement that contains only human protein can be used, the inner cell mass has to be isolated mechanically, and the colonies have to be split mechanically for passaging. Somatic cell nuclear transfer would help to overcome rejection of transplanted cells.

Extra keywords: blastocyst, culture, feeder cell, microarray, somatic cell nuclear transfer.


References

Aghajanova, L. , Skottman, H. , Strömberg, A. M. , Matilainen, E. , Inzunza, J. , Lahesmaa, R. , and Hovatta, O. (2006). The expression of leukemia inhibitory factor and its receptors is increased during differentiation of human embryonic stem cells. Fertil. Steril. 86(Suppl. 4), 1193–1209.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bjuresten, K. , and Hovatta, O. (2003). Donation of embryos for stem cell research – how many couples consent? Hum. Reprod. 18, 1353–1355.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bongso, A. , Fong, C. Y. , Ng, S. C. , and Ratnam, S. (1994). Isolation and culture of inner cell mass cells from human blastocysts. Hum. Reprod. 9, 2110–2117.
PubMed |

Draper, J. S. , Smith, K. , Gokhale, P. , Moore, H. D. , Maltby, E. , Johnson, J. , Meisner, L. , Zwaka, T. P. , Thomson, J. A. , and Andrews, P. W. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grinnemo, K. H. , Kumagai-Braesch, M. , Månsson-Broberg, A. , Skottman, H. , and Hao, X. , et al. (2006). Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod. Biomed. Online 13, 712–724.


Heins, N. , Englund, M. C. , Sjoblom, C. , Dahl, U. , and Tonning, A. , et al. (2004). Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22, 367–376.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hovatta, O. , Mikkola, M. , Gertow, K. , Stromberg, A. M. , Inzunza, J. , Hreinsson, J. , Rozell, B. , Blennow, E. , Andang, M. , and Ahrlund-Richter, L. (2003). A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Inzunza, J. , Gertow, K. , Stromberg, M. A. , Matilainen, E. , Blennow, E. , Skottman, H. , Wolbank, S. , Ahrlund-Richter, L. , and Hovatta, O. (2005). Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23, 544–549.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Klimanskaya, I. , Chung, Y. , Meisner, L. , Johnson, J. , West, M. , and Lanza, R. (2005). Human embryonic stem cells derived without feeder cells. Lancet 365, 1636–1641.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Koivisto, H. , Hyvärinen, M. , Strömberg, A.-M. , Inzunza, J. , Matilainen, E. , Mikkola, M. , Hovatta, O. , and Teerijoki, H. (2004). Cultures of human embryonic stem cells: serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor. Reprod. Biomed. Online 9, 330–337.
PubMed |

Ludwig, T. E. , Levenstein, M. E. , Jones, J. M. , Berggren, W. T. , and Mitchen, E. R. , et al. (2006). Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martin, M. J. , Muotri, A. , Gage, F. , and Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nichols, J. , Chambers, I. , and Smith, A. (1994). Derivation of germline competent embryonic stem cells with a combination of interleukin-6 and soluble interleukin-6 receptor. Exp. Cell Res. 215, 237–239.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reubinoff, B. E. , Pera, M. F. , Fong, C. Y. , Trounson, A. , and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Skottman, H. , Mikkola, M. , Lundin, K. , Olsson, C. , Stromberg, A. M. , Tuuri, T. , Otonkoski, T. , Hovatta, O. , and Lahesmaa, R. (2005). Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23, 1343–1356.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Skottman, H. , Stromberg, A. M. , Matilainen, E. , Inzunza, J. , Hovatta, O. , and Lahesmaa, R. (2006). Unique gene expression signature by human embryonic stem cells cultured under serum-free conditions correlates with their enhanced and prolonged growth in an undifferentiated stage. Stem Cells 24, 151–167.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, A. G. , Heath, J. K. , Donaldson, D. D. , Wong, G. G. , and Moreau, J. , et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomson, J. A. , Itskovitz-Eldor, J. , Shapiro, S. S. , Waknitz, M. A. , Swiergiel, J. J. , Marshall, V. S. , and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xu, R. H. , Peck, R. M. , Li, D. S. , Feng, X. , Ludwig, T. , and Thomson, J. A. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
Crossref | GoogleScholarGoogle Scholar | PubMed |