Transcription profile during maternal to zygotic transition in the mouse embryo
Xing-Yu Li A , Xiang-Shun Cui A B and Nam-Hyung Kim A CA Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea.
B Jilin Agricultural University, Changchun City, Jilin Province, China.
C Corresponding author. Email: nhkim@chungbuk.ac.kr
Reproduction, Fertility and Development 18(6) 635-645 https://doi.org/10.1071/RD06015
Submitted: 27 February 2006 Accepted: 9 April 2006 Published: 22 June 2006
Abstract
To gain insight into early embryo development, we used microarray technology to compare gene expression profiles in metaphase II oocytes and one- (1C), two- (2C) and four-cell (4C) embryos. Differences in spot intensities were normalised and grouped using Avadis Prophetic software platform (version 3.3; Strand Genomics, Bangalore, India) and categories were based on the PANTHER and Gene Ontology classification systems. We examined 6927 genes and identified those preferentially expressed in 1C or 2C embryos. We found 1261 genes that were more highly expressed (P < 0.05) in 1C compared with 2C embryos and 1480 genes showing enhanced expression in 2C embryos. Similarly, we investigated 6581 genes present in 2C and 4C embryos and identified 841 that are expressed to a greater extent at the 2C stage and 905 that are more highly expressed at the 4C stage. Using PANTHER classification, genes that were upregulated and downregulated in 2C embryos compared with 1C and 4C embryos were grouped according to their protein functions, which included developmental processes, electron transport, lipid, fatty acid and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, protein metabolism and modification, signal transduction and transport, among others. Real time reverse transcription–polymerase chain reaction was performed to confirm differential expression of 14 selected genes. The identification of the genes being expressed will provide insight into the complex gene regulatory networks affecting zygotic genome activation and further development.
Extra keywords: gene expression, microarray, zygotic gene.
Acknowledgments
This research was supported by grants from The Ministry of Science and Technology (NRL), The Ministry of Agriculture and Forestry (Bio-Organ Production Project) and Research Center for Bioresource and Health in Chungbuk National University.
Altschul, S. , Gish, W. , Miller, W. , Myers, E. , and Lipman, D. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Aoki, F. , Worrad, D. M. , and Schultz, R. M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Averet, N. , Aguilaniu, H. , Bunoust, O. , Gustafsson, L. , and Rigoulet, M. (2002). NADH is specifically channeled through the mitochondrial porin channel in Saccharomyces cerevisiae. J. Bioenerg. Biomembr. 34, 499–506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Beattie, D. S. , Japa, S. , Howton, M. , and Zhu, Q. S. (1992). Direct interaction between the internal NADH : ubiquinone oxidoreductase and ubiquinol : cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Arch. Biochem. Biophys. 292, 499–505.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Benjamini, Y. , and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.
Bouniol, C. , Nguyen, E. , and Debey, P. (1995). Endogenous transcription occurs at the 1-cell stage in the mouse embryo. J. Cell Sci. 218, 57–62.
Buck, L. B. (1996). Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chock, P. B. , and Gutfreund, H. (1988). Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase. Proc. Natl Acad. Sci. USA 85, 8870–8874.
| PubMed |
Cui, X. S. , Shin, M. R. , Lee, K. A. , and Kim, N. H. (2005). Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol. Reprod. Dev. 70, 278–287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cui, X. S. , Li, X. Y. , Jeong, Y. J. , Jun, J. H. , and Kim, N. H. (2006). Gene expression of Cox 5a, 5b, or 6b1, and their roles in preimplantation mouse embryos. Biol. Reprod. 74, 601–610.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
De Sousa, P. A. , Westhusin, M. E. , and Watson, A. J. (1998). Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Mol. Reprod. Dev. 49, 119–130.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fukuda, N. , Yomogida, K. , Okabe, M. , and Touhara, K. (2004). Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117, 5835–5845.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Haase, A. D. , Jaskiewicz, L. , Zhang, H. , Laine, S. , Sack, R. , Gatignol, A. , and Filipowicz, W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Haggarty, P. , Wood, M. , Ferguson, E. , Hoad, G. , Srikantharajah, A. , Milne, E. , Hamilton, M. , and Bhattacharya, S. (2006). Fatty acid metabolism in human preimplantation embryos. Hum. Reprod. 21, 766–773.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hamatani, T. , Daikoku, T. , Wang, H. , Matsumoto, H. , Carter, M. G. , Ko, M. S. , and Dey, S. K. (2004). Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl Acad. Sci. USA 101, 10 326–10 331.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jagow, G. , and Klingenberg, M. (1969). Hydrogen pathways in the mitochondrion of Saccharomyces carlsbergensis. Hoppe Seylers Z. Physiol. Chem. 350, 1155.
| PubMed |
Jeong, Y. J. , Choi, H. W. , Shin, H. S. , Cui, X. S. , Kim, N. H. , Gerton, G. L. , and Jun, J. H. (2005). Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol. Reprod. Dev. 71, 284–289.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Katada, S. , Tanaka, M. , and Touhara, K. (2004). Structural determinants for membrane trafficking and G protein selectivity of a mouse olfactory receptor. J. Neurochem. 90, 1453–1463.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kopecny, V. , Biggiogera, M. , Laurincik, J. , Pivko, J. , Grafenau, P. , Martin, T. E. , Fu, X. D. , and Fakan, S. (1996). Fine structural cytochemical and immunocytochemical analysis of nucleic acids and ribonucleoprotein distribution in nuclei of pig oocytes and early preimplantation embryos. Chromosoma 104, 561–574.
| PubMed |
Laurincik, J. , Bjerregaard, B. , Strejcek, F. , Rath, D. , Niemann, H. , Rosenkranz, C. , Ochs, R. L. , and Maddox-Hyttel, P. (2004). Nucleolar ultrastructure and protein allocation in in vitro produced porcine embryos. Mol. Reprod. Dev. 68, 327–334.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lee, H. Y. , Cui, X. S. , Lee, K. A. , and Kim, N. H. (2006). Annealing control primer system identifies differentially expressed genes in blastocyst stage porcine parthenotes. Zygote 14, 71–80.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Livak, K. J. , and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Mohan, M. , Ryder, S. , Claypool, P. L. , Geisert, R. D. , and Malayer, J. R. (2002). Analysis of gene expression in the bovine blastocyst produced in vitro using suppression-subtractive hybridization. Biol. Reprod. 67, 447–453.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oey, N. A. , Ijlst, L. , van Roermund, C. W. , Wijburg, F. A. , and Wanders, R. J. (2005). dif-1 and colt, both implicated in early embryonic development, encode carnitine acylcarnitine translocase. Mol. Genet. Metab. 85, 121–124.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Paynton, B. V. , Rempel, R. , and Bachvarova, R. (1988). Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev. Biol. 129, 304–314.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ram, P. T. , and Schultz, R. M. (1993). Reporter gene expression in G2 of the 1-cell mouse embryo. Dev. Biol. 156, 552–556.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tanaka, T. S. , and Ko, M. S. H. (2004). A global view of gene expression in the preimplantation mouse embryo: morula versus blastocyst. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S85–S91.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tanaka, T. S. , Jaradat, S. A. , Lim, M. K. , Kargul, G. J. , Wang, X. , and Grahovac, M. J. (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a 15 000 mouse developmental cDNA microarray. Proc. Natl Acad. Sci. USA 97, 9127–9132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vire, E. , Brenner, C. , Deplus, R. , Blanchon, L. , and Fraga, M. , et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Viuff, D. , Hyttel, P. , Avery, B. , Vajta, G. , Greve, T. , Callesen, H. , and Thomsen, P. D. (1998). Ribosomal ribonucleic acid is transcribed at the 4-cell stage in in vitro-produced bovine embryos. Biol. Reprod. 59, 626–631.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Viuff, D. , Greve, T. , Holm, P. , Callesen, H. , Hyttel, P. , and Thomsen, P. D. (2002). Activation of the ribosomal RNA genes late in the third cell cycle of porcine embryos. Biol. Reprod. 66, 629–634.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wang, Q. T. , Piotrowska, K. , Ciemerych, M. A. , Milenkovic, L. , Scott, M. P. , Davis, R. W. , and Zernicka-Goetz, M. (2004). A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Whitworth, K. M. , Agca, C. , Kim, J. G. , Patel, R. V. , Springer, G. K. , Bivens, N. J. , Forrester, L. J. , Mathialagan, N. , Green, J. A. , and Prather, R. S. (2005). Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72, 1437–1451.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zeng, F. , and Schultz, R. M. (2003). Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68, 31–39.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zeng, F. , Baldwin, D. A. , and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.
| Crossref | GoogleScholarGoogle Scholar | PubMed |