Vascular endothelial growth factor production by rat granulated metrial gland cells and their morphological features in normal and pathological conditions
Celal Kaloglu A B and H. Eray Bulut AA Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, 58140 Sivas, Turkey.
B Corresponding author. Email: ckaloglu@cumhuriyet.edu.tr
Reproduction, Fertility and Development 19(2) 341-350 https://doi.org/10.1071/RD05143
Submitted: 14 June 2006 Accepted: 9 September 2006 Published: 15 January 2007
Abstract
Granulated metrial gland (GMG) cells are pregnancy-specific cells that may have many functions in successful placentation and pregnancy. In the present study, changes in the rat GMG cell structure, distribution and vascular endothelial growth factor (VEGF) expression during early pregnancy were evaluated by light microscopy. Implantation sites taken from females with spontaneous abortion were also investigated. On Day 7 of pregnancy, GMG cells were distributed through the implantation and interimplantation sites. They formed metrial glands in the mesometrial triangle on Day 9, and were observed in the decidua basalis on Day 14 of pregnancy. Avidin–biotin complex immunohistochemistry revealed that GMG cells showed moderate staining for VEGF at the beginning of pregnancy and intense staining on Days 9 and 10 of pregnancy. They were localised mostly near the newly formed blood vessels. The implantation sites from spontaneously aborting females showed numerous leucocytes in the lumen of mesometrial blood vessels. In spontaneously aborting females, GMG cells showed a distinct morphology, increased in number and volume, their granules were denser and degranulation was observed. These results suggest that rat GMG cells might be a guide for placental angiogenesis and they might share a role with leucocytes in pathological conditions.
Additional keywords: abortus, angiogenesis, implantation.
Ain, R. , Canham, I. N. , and Scares, M. J. (2003). Gestation stage-dependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation. Dev. Biol. 260, 176–190.
| PubMed |
Allen, M. P. , and Nilsen-Hamilton, M. (1998). Granzymes D, E, F, and G are regulated through pregnancy and by IL-2 and IL-15 in granulated metrial gland cells. J. Immunol. 161, 2772–2779.
| PubMed |
Allen, W. R. , Kydd, J. H. , Boyle, M. S. , and Antczak, D. F. (1985). Between species transfer of horse and donkey embryos: a valuable research tool. Equine Vet. J. Suppl. 3, 53–62.
Ashkar, A. A. , and Croy, B. A. (2001). Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin. Immunol. 13, 235–241.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Buckrell, B. C. , Gartley, C. J. , Mehren, K. G. , Crawshaw, G. J. , Johnson, W. H. , Barker, I. K. , Balke, J. , Coghill, C. , Challis, J. R. G. , and Goodrowe, K. L. (1990). Failure to maintain interspecific pregnancy after transfer of Ball’s sheep embryos to domestic ewes. J. Reprod. Fertil. 90, 387–394.
| PubMed |
Buendia, A. J. , Sanchez, J. , Martinez, M. C. , Camara, P. , Navarro, J. A. , Rodolakis, A. , and Salinas, J. (1998). Kinetics of infection and effects on placental cell populations in a murine model of Chlamydia psittaci-induced abortion. Infect. Immun. 66, 2128–2134.
| PubMed |
Bulmer, J. N. , and Lash, G. E. (2005). Human uterine natural killer cells: a reappraisal. Mol. Immunol. 42, 511–521.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Charnock-Jones, D. S. , Kaufman, P. , and Mayhew, T. M. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis I. Molecular regulation. Placenta 25, 103–113.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Croy, B. A. (1994). Granulated metrial gland cells: hypothesis concerning possible functions during murine gestation. J. Reprod. Immunol. 27, 85–94.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Croy, B. A. , Rossant, J. , and Clarck, D. A. (1982). Histological and immunological studies of post implantation deeath of Mus craoli embryos in the Mus musculus uterus. J. Reprod. Immunol. 4, 277–293.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ferrara, N. (1999). Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 56, 794–814.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Frels, W. I. , Rossant, J. , and Chapman, V. M. (1980). Intrinsic and extrinsic factors affecting the viability of Mus caroli × M. musculus hybrid embryos. J. Reprod. Fertil. 59, 387–392.
| PubMed |
Gargett, C. E. , Lederman, F. , Heryanto, B. , Gambino, L. S. , and Rogers, P. A. W. (2001). Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum. Reprod. 16, 1065–1075.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gerwins, P. , Sköldenberg, E. , and Claesson-Welsh, L. (2000). Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit. Rev. Oncol. Hematol. 34, 185–194.
| PubMed |
Gill, K. A. , and Brindle, N. P. (2005). Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem. Biophys. Res. Commun. 336, 392–396.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Goldman-Wohl, D. S. , Ariel, I. , Greenfield, C. , Lavy, Y. , and Yagel, S. (2000). Tie-2 and angiopoietin-2 expression at the fetal–maternal interface: a receptor–ligand model for vascular remodeling. Mol. Hum. Reprod. 6, 81–87.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Greenwood, J. D. , Minnas, K. , Di Santo, J. P. , Makita, M. , Kiso, Y. , and Croy, B. A. (2000). Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta 21, 693–702.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Guimond, M.-J. , Wang, B. , Fujita, J. , Terhorst, C. , and Croy, B. A. (1996). Pregnancy-associated uterine granulated metrial gland cells in mutant and transgenic mice. Am. J. Reprod. Immunol. 35, 501–509.
| PubMed |
Guimond, M.-J. , Luross, J. A. , Wang, B. , Terhorst, C. , Danial, S. , and Croy, B. A. (1997). Absence of natural killer cells during murine pregnancy is associated with reproductive compromise in tge26 mice. Biol. Reprod. 56, 169–179.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Guimond, M.-J. , Wang, B. , and Croy, B. A. (1998). Engraftment of bone marrow from severe combined immunodeficient (scid) mice reverses the reproductive defects in natural killer cell-deficient tge26 mice. J. Exp. Med. 187, 217–223.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Head, J. R. , Kresge, C. K. , Young, J. D. , and Hiserodt, J. C. (1994). Nkr-p1+ cells in the rat uterus: granulated metrial gland cells are of the natural killer cell lineage. Biol. Reprod. 51, 509–523.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Joan, S. H. , Margaret, G. P. , and Tim, G. B. (2000). Uterine leukocytes: key players in pregnancy. Cell. Dev. Biol. 11, 127–137.
| Crossref | GoogleScholarGoogle Scholar |
Kaloglu, C. , Gursoy, E. , and Onarlioglu, B. (2003). Early maternal changes contributing to the formation of the chorioalantoic and yolk sac placentas in rat: a morphological study. Anat. Histol. Embryol. 32, 200–206.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kusakabe, K. , Okada, T. , Sasaki, F. , and Kiso, Y. (1999). Cell death of uterine natural killer cells in murine placenta during placentation and preterm periods. J. Vet. Med. Sci. 61, 1093–1100.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Li, X. F. , Charnock-Jones, D. S. , Zhang, E. , Hiby, S. , Malik, S. , Day, K. , Licence, D. , Bowen, J. M. , Gardner, L. , Kingt, A. , Loke, Y. W. , and Smith, S. K. (2001). Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J. Clin. Endocrinol. Metab. 86, 1823–1834.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Mukhtar, D. D. , Stewart, I. J. , and Croy, B. A. (1989). Leucocyte membrane antigens on mouse granulated metrial gland cells. J. Reprod. Immunol. 15, 269–279.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Namiki, A. , Brogi, E. , Kearney, M. , Kim, E. A. , Wu, T. , Couffinhal, T. , Varticovski, L. , and Isner, J. M. (1995). Hypoxia induces vascular endothelial growth gactor in cultured human endothelial cells. J. Biol. Chem. 270, 31 189–31 195.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Parr, E. L. , Chen, H. L. , Parr, M. B. , and Hunt, J. S. (1995). Synthesis and granular localization of tumor necrosis factor-α in activated NK cells in the pregnant mouse uterus. J. Reprod. Immunol. 28, 31–40.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Peel, S. (1989). Granulated metrial gland cells. Adv. Anat. Embryol. Cell Biol. 115, 1–109.
| PubMed |
Peel, S. , Stewart, I. J. , and Bulmer, D. (1983). Experimental evidence for the bone marrow origin of granulated metrial gland cells of the mouse uterus. Cell Tissue Res. 233, 647–656.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pfarrer, C. , Ruziwa, S. , Winther, H. , Callesen, H. , Leiser, R. , Schams, D. , and Dantzer, V. (2006). Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term. Placenta 27, 889–898.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Shixiong, X. , Suziki, H. , and Toyokawa, K. (1999). Peri-implantation embryonic loss and its related uterine factors in aged hamsters. J. Reprod. Dev. 45, 197–204.
| Crossref | GoogleScholarGoogle Scholar |
Sladek, S. M. , Kanbour-Shakir, A. , Watkinsc, S. , Berghornd, K. A. , Hoffman, G. E. , and Roberts, J. M. (1998). Granulated metrial gland cells contain nitric oxide synthases during pregnancy in the rat. Placenta 19, 55–65.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stewart, I. J. (1998). Granulated metrial gland cells in ‘minor’ species. J. Reprod. Immunol. 40, 129–146.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stewart, I. J. , and Peel, S. (1980). Granulated metrial gland cells at implantation sites of pregnant mouse uterus. Anat. Embryol. 160, 227–238.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Straatsburg, I. H. , and Gossrau, R. (1993). Enzyme histochemistry of the regressing rat decidua and metrial gland. Acta Histochem. 94, 202–219.
| PubMed |
Tachi, S. , and Tachi, C. (1979). Ultrastructural studies on maternal–embryonic cell interaction during experimentally induced of rat blastocysts to the endometrium of the mouse. Dev. Biol. 68, 203–223.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wang, C. , Umesak, N. , Nakamura, H. , Tanaka, T. , Nakatani, K. , Sakaguchi, I. , Ogita, S. , and Kancda, K. (2000). Expression of vascular endothelial growth factor by granulated metrial gland cells in pregnant murine uteri. Cell Tissue Res. 300, 285–293.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wang, C. , Tanaka, T. , Nakamura, H. , Umesaki, N. , Hirai, K. , Ishiko, O. , Ogita, S. , and Kaneda, K. (2003). Granulated metrial gland cells in the murine uterus: localization, kinetics, and the functional role in angiogenesis during pregnancy. Microsc. Res. Tech. 60, 420–429.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Welsh, A. O. , and Enders, A. C. (1987). Trophoblast–decidual cell interactions and establishment of maternal blood circulation in the parietal yolk sac placenta of the rat. Anat. Rec. 217, 203–219.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Welsh, A. O. , and Enders, A. C. (1991). Chorioalantoic placenta formation in the rat. 1. Luminal epithelial cell death and extracellular matrix modifications in the mesometrial region of implantation chambers. Am. J. Anat. 192, 215–231.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Widayati, D. T. , Ohmori, Y. , Wakita, T. , and Fukuta, K. (2003). Development of transferred xenogeneic vole embryos in mouse uteri. Anim. Sci. J. 74, 261–267.
| Crossref | GoogleScholarGoogle Scholar |
Widayati, D. T. , Ohmori, Y. , and Fukuta, K. (2004). Distribution patterns of immunocompetent cells in the pregnant mouse uteri carrying allogeneic mouse and xenogeneic vole embryos. J. Anat. 205, 45–55.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Winther, H. , and Dantzer, V. (2001). Co-localization of vascular endothelial growth factor and its two receptors Flt-1 and KDR in the mink placenta. Placenta 22, 457–465.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wulff, C. , Wilson, H. , Dickson, S. E. , Wiegand, S. J. , and Fraser, H. M. (2002). Hemochorial placentation in the primate: expression of vascular endothelial growth factor, angiopoietins, and their receptors throughout pregnancy. Biol. Reprod. 66, 802–812.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zheng, L. M. , Ojcius, D. M. , Liu, C. C. , Kramer, M. D. , Simon, M. M. , Parr, E. L. , and Young, J. D. (1991). Immunogold labeling of perforin and serine esterases in granulated metrial gland cells. FASEB J. 5, 79–85.
| PubMed |
Zhou, A.-L. , Egginton, S. , Brown, M. D. , and Hudlicka, O. (1998). Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat. Rec. 252, 49–63.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhu, Y. , Lee, C. , Shen, F. , Du, R. , Young, W. L. , and Yang, G. Y. (2005). Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 36, 1533–1537.
| Crossref | GoogleScholarGoogle Scholar | PubMed |