Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells
Francesca Grasselli A B , Giuseppina Basini A , Simona Bussolati A and Federico Bianco AA Dipartimento di Produzioni Animali, Biotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti-Sezione di Fisiologia Veterinaria, Università di Parma, 43100 Parma, Italy.
B Corresponding author. Email: francesca.grasselli@unipr.it
Reproduction, Fertility and Development 17(7) 715-720 https://doi.org/10.1071/RD05059
Submitted: 20 May 2005 Accepted: 16 September 2005 Published: 2 November 2005
Abstract
Hypoxia occurs physiologically during ovarian follicle growth; this deprivation represents a triggering stimulus for the production of vascular endothelial growth factor (VEGF) by proliferating granulosa cells, which are mostly responsible for the growth of the follicle. Moreover, the steroidogenic activity of these cells ensures a receptive environment for the implantation and development of the early embryo. The present paper reports the adaptive response of swine granulosa cells to cobalt chloride (CoCl2), a chemical hypoxia-mimicking agent. The effects of the treatment were evaluated on cell proliferation, steroidogenesis and VEGF production. In addition, because mithocondrial reactive oxygen species (ROS) are possibly involved in O2 sensing, ROS levels and scavenging enzyme activity were investigated. In the present study, CoCl2 had no effect on progesterone production, although it significantly reduced oestradiol synthesis. The addition of CoCl2 to granulosa cell culture stimulated VEGF production and the generation of hydrogen peroxide. Chemical hypoxia had different effects on scavenger enzyme activities: the activity of superoxide dismutase was enhanced, that of peroxidase reduced and catalase activity was unaffected. The net result is a ‘pro-oxidant’ state, which appears to be possibly involved in the stimulation of VEGF production, thus inducing follicular angiogenesis.
Extra keywords: reactive oxygen species, steroidogenesis, vascular endothelial growth factor.
Acknowledgments
This work was supported by a FIL University of Parma grant and a ‘Programma di Ricerca di Rilevante Interesse Nazionale’ of the Ministero dell’Istruzione dell’ Università e della Ricerca.
Antczak, M. (2001). Possible ramifications of the identification of ovarian follicular granulosa cells as specialized endothelial-like cells: a speculative treatise. Reprod. Biomed. Online 2, 188–197.
| PubMed |
Barboni, B. , Turriani, M. , Galeati, G. , Spinaci, M. , Bacci, M. L. , Forni, M. , and Mattioli, M. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63, 858–864.
| PubMed |
Basini, G. , Bianco, F. , Grasselli, F. , Tirelli, M. , Bussolati, S. , and Tamanini, C. (2004a). The effects of reduced oxygen tension on swine granulosa cell. Regul. Pept. 120, 69–75.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Basini, G. , Grasselli, F. , Bianco, F. , Tirelli, M. , and Tamanini, C. (2004b). Effect of reduced oxygen tension on reactive oxygen species production and activity of antioxidant enzymes in swine granulosa cells. Biofactors 20, 61–69.
| PubMed |
BelAiba, R. S. , Djordjevic, T. , Bello, S. , Flugel, D. , Hess, J. , Kietzmann, T. , and Gorlach, A. (2004). Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol. Chem. 385, 249–257.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chandel, N. S. , Maltepe, E. , Goldwasser, E. , Mathieu, C. E. , Simon, M. C. , and Schumaker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11 715–11 720.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chang, T. C. , Huang, C. J. , Tam, K. , Chen, S. F. , Tan, K. T. , Tsai, M. S. , Lin, T. N. , and Shyue, S. K. (2005). Stabilization of hypoxia-inducible factor-1alpha by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. J. Biol. Chem. 22,in press.
Diemer, T. , Allen, J. A. , Held Hales, K. , and Buchanan Hales, D. (2003). Reactive oxygen disrupts mitochondria in MA-10 tumour Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144, 2882–2891.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ezashi, T. , Das, P. , and Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA 102, 4783–4788.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Friedman, C. I. , Danforth, D. R. , Herbosa-Encarnacion, C. , Arbogast, L. , Alak, B. M. , and Seifer, D. B. (1997). Follicular fluid vascular endothelial growth factor concentrations are elevated in women of advanced reproductive age undergoing ovulation induction. Fertil. Steril. 68, 607–612.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jayes, F. C. L. , Day, R. N. , Garmey, J. C. , Urban, R. J. , Zhang, G. , and Veldhuis, J. D. (2000). Calcium ions positively modulate follicle-stimulating hormone- and exogenous 3′,5′-adenosine monophosphate-driven transcription of the P450scc gene in porcine granulosa cells. Endocrinology 141, 2377–2384.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jung, J. Y. , and Kim, W. J. (2004). Involvement of mitochondrial- and Fas-mediated dual mechanism in CoCl2-induced apoptosis of rat PC12 cells. Neurosci. Lett. 371, 85–90.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kietzmann, T. , and Gorlach, A. (2005). Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin. Cell Dev. Biol. 16, 474–486.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Land, S. , and Wilson, S. M. (2005). Redox regulation of lung development and perinatal lung epithelial function. Antioxid. Redox Signal. 7, 92–107.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Marti, H. H. (2005). Angiogenesis: a self-adapting principle in hypoxia. Experientia Supplementum 94, 163–180.
| PubMed |
Neeman, M. , Abramovitch, R. , Schiffenbauer, Y. S. , and Tempel, C. (1997). Regulation of angiogenesis by hypoxic stress: from solid tumours to ovarian follicle. Int. J. Exp. Pathol. 78, 57–70.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
North, S. , Moenner, M. , and Bikfalvi, A. (2005). Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett. 218, 1–14.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Panesar, N. S. (2004). High altitude sickness. Is acute cortisol deficiency involved in its pathophysiology? Med. Hypotheses 63, 507–510.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Raff, H. , and Bruder, E. D. (2005). Steroidogenesis in human aldosterone-secreting adenomas and adrenal hyperplasias: effects of hypoxia in vitro. Am. J. Physiol. Endocrinol. Metab. 16,in press.
Ravindranath, N. , Little-Ihrig, L. , Phillips, H. S. , Ferrara, N. , and Zeleznik, A. J. (1992). Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131, 254–260.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sen, C. K. , Khanna, S. , Babior, B. M. , Hunt, T. K. , Ellison, E. C. , and Roy, S. (2002). Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J. Biol. Chem. 277, 33 284–33 290.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sharkey, A. M. , Day, K. , McPherson, A. , Malik, S. , Licence, D. , Smith, S. K. , and Charnock-Jones, D. S. (2000). Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J. Clin. Endocrinol. Metab. 85, 402–409.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Shie, J. L. , Wu, G. , Wu, J. , Liu, F. F. , Laham, R. J. , Oettgen, P. , and Li, J. (2004). RTEF-1, a novel transcriptional stimulator of VEGF in hypoxic endothelial cells. J. Biol. Chem. 279, 25 010–25 016.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Shweiki, D. , Itin, A. , Soffer, D. , and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sun, H. Y. , Wang, N. P. , Kerendi, F. , Halkos, M. , Kin, H. , Guyton, R. A. , Vinten-Johansen, J. , and Zhao, Z. Q. (2004). Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting the generation of reactive oxygen species and intracellular calcium overload. Am. J. Physiol. Heart Circ. Physiol. 288, H1900–H1908.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tesone, M. , Stouffer, R. L. , Borman, S. M. , Hennebold, J. D. , and Molskness, T. A. (2005). Vascular endothelial growth factor (VEGF) production by the monkey corpus luteum during the menstrual cycle: isoform-selective mrna expression in vivo and hypoxia-regulated protein secretion in vitro. Biol. Reprod. 29,in press.
Wang, G. , Hazra, T. K. , Mitra, S. , Lee, H. M. , and Englander, E. W. (2000). Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res. 28, 2135–2140.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Waypa, G. B. , and Schumaker, P. T. (2004). Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J. Appl. Physiol. 98, 404–414.
| Crossref | GoogleScholarGoogle Scholar |
Winnett, G. , van Hagen, D. , and Schrey, M. (2003). Prostaglandin J2 metabolites inhibit aromatase activity by redox-sensitive mechanisms: potential implications for breast cancer therapy. Int. J. Cancer 103, 600–605.
| Crossref | GoogleScholarGoogle Scholar | PubMed |