Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Glucocorticoids and serotonin alter glucocorticoid receptor mRNA levels in fetal guinea-pig hippocampal neurons, in vitro

P. Erdeljan A , M. H. Andrews A , J. F. MacDonald A C and S. G. Matthews A B D E
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.

B Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.

C Department of Pharmacology Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.

D Department of Medicine, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.

E Corresponding author. Email: stephen.matthews@utoronto.ca

Reproduction, Fertility and Development 17(7) 743-749 https://doi.org/10.1071/RD05043
Submitted: 12 April 2005  Accepted: 20 September 2005   Published: 2 November 2005

Abstract

The hypothalamic–pituitary–adrenal (HPA) axis is susceptible to programming during fetal life. Such programming occurs, at least partially, at the level of the hippocampus. The hippocampus plays a central role in regulation of the HPA axis and release of endogenous glucocorticoids, via mediation of glucocorticoid negative feedback. Fetal exposure to synthetic glucocorticoids can permanently alter glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) levels within the hippocampus, and serotonin is thought to be involved in this process. In the present study, we hypothesised that dexamethasone, cortisol and serotonin exposure would modify GR mRNA expression within fetal guinea-pig hippocampal cultures. Cultures were derived from 40-day-old guinea-pig fetuses, and were exposed to 0, 1, 10 and 100 nm dexamethasone, cortisol or serotonin for 4 days. Expression of GR and MR mRNA was examined by in situ hybridisation followed by high-resolution silver emulsion autoradiography. Four-day exposure to dexamethasone (P < 0.05; 100 nm) or cortisol (P = 0.08; 100 nm) downregulated the expression of GR mRNA within neurons. There was no change in the expression of MR mRNA levels following cortisol treatment. Exposure to serotonin (100 nm) significantly increased GR mRNA levels in hippocampal neurons. We conclude that synthetic and endogenous glucocorticoids, as well as serotonin, can influence GR expression during hippocampal development and in this way may act to permanently programme HPA function.


Acknowledgments

This study was supported by the Canadian Institutes of Health Research (MOP-49511) awarded to S.G.M. We wish to thank Ela Czerwinska and Lidia Brandes for their expertise in developing the culture system utilised in this study.


References

Bakker, J. M. , Schmidt, E. D. , Kroes, H. , Kavelaars, A. , Heijnen, C. J. , Tilders, F. J. , and van Rees, E. P. (1995). Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo–pituitary–adrenal axis in the rat. J. Neuroimmunol. 63, 183–191.
Crossref | GoogleScholarGoogle Scholar | PubMed | Erdeljan P., MacDonald J. F., and Matthews S. G. (2000). Do glucocorticoids and serotonin modify glucocorticoid receptor and mineralocorticoid receptor mRNA levels in fetal guinea pig neurons, in vitro? In ‘Program of the 30th Annual Meeting of the Society for Neuroscience’. Abstract 152.3. (Society for Neuroscience: Washington, DC, USA.)

Erdeljan, P. , MacDonald, J. F. , and Matthews, S. G. (2001). Glucocorticoids and serotonin alter glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR) mRNA levels in fetal mouse hippocampal neurons, in vitro. Brain Res. 896, 130–136.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Herr, A. S. , Tsolakidou, A. F. , Yassouridis, A. , Holsboer, F. , and Rein, T. (2003). Antidepressants differentially influence the transcriptional activity of the glucocorticoid receptor in vitro. Neuroendocrinology 78, 12–22.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hery, M. , Semont, A. , Fache, M. P. , Faudon, M. , and Hery, F. (2000). The effects of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. J. Neurochem. 74, 406–413.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Keightley, M. C. , Curtis, A. J. , Chu, S. , and Fuller, P. J. (1998). Structural determinants of cortisol resistance in the guinea pig glucocorticoid receptor. Endocrinology 139, 2479–2485.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kraft, N. , Hodgson, A. J. , and Funder, J. W. (1979). Glucocorticoid receptor and effector mechanisms: a comparison of the corticosensitive mouse with the corticoresistant guinea pig. Endocrinology 104, 344–349.
PubMed |

Lai, M. , McCormick, J. A. , Chapman, K. E. , Kelly, P. A. , Seckl, J. R. , and Yau, J. L. (2003). Differential regulation of corticosteroid receptors by monoamine neurotransmitters and antidepressant drugs in primary hippocampal culture. Neuroscience 118, 975–984.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Laplante, P. , Diorio, J. , and Meaney, M. J. (2002). Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res. Dev. Brain Res. 139, 199–203.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Levine, S. (1957). Infantile experience and consummatory behavior in adulthood. J. Comp. Physiol. Psychol. 50, 609–612.
PubMed |

Levine, S. (1994). The ontogeny of the hypothalamic–pituitary–adrenal axis. The influence of maternal factors. Ann. N. Y. Acad. Sci. 746, 275–288.
PubMed |

Levitt, N. S. , Lindsay, R. S. , Holmes, M. C. , and Seckl, J. R. (1996). Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 64, 412–418.
PubMed |

Liu, L. , Li, A. , and Matthews, S. G. (2001). Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am. J. Physiol. Endocrinol. Metab. 280, E729–E739.
PubMed |

Matthews, S. G. (1998). Dynamic changes in glucocorticoid and mineralocorticoid receptor mRNA in the developing guinea pig brain. Brain Res. Dev. Brain Res. 107, 123–132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matthews, S. G. (2002). Early programming of the hypothalamo–pituitary–adrenal axis. Trends Endocrinol. Metab. 13, 373–380.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matthews, S. G. , and Challis, J. R. (1995). Regulation of CRH and AVP mRNA in the developing ovine hypothalamus: effects of stress and glucocorticoids. Am. J. Physiol. 268, E1096–E1107.
PubMed |

Matthews, S. G. , Han, X. , Lu, F. , and Challis, J. R. (1994). Developmental changes in the distribution of pro-opiomelanocortin and prolactin mRNA in the pituitary of the ovine fetus and lamb. J. Mol. Endocrinol. 13, 175–185.
PubMed |

McCabe, L. , Marash, D. , Li, A. , and Matthews, S. G. (2001). Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J. Neuroendocrinol. 13, 425–431.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meaney, M. J. , Diorio, J. , Francis, D. , LaRocque, S. , O’Donnell, D. , Smythe, J. W. , Sharma, S. , and Tannenbaum, B. (1994). Environmental regulation of the development of glucocorticoid receptor systems in the rat forebrain. The role of serotonin. Ann. N. Y. Acad. Sci. 746, 260–273.
PubMed |

Meaney, M. J. , Diorio, J. , Francis, D. , Weaver, S. , Yau, J. , Chapman, K. , and Seckl, J. R. (2000). Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J. Neurosci. 20, 3926–3935.
PubMed |

Morreale de Escobar, G. (2001). The role of thyroid hormone in fetal neurodevelopment. J. Pediatr. Endocrinol. Metab. 14((Suppl. 6)), 1453–1462.
PubMed |

NIH (2001). Antenatal corticosteroids revisited: repeat courses. National Institutes of Health Consensus Development Conference Statement, August 17–18, 2000. Obstet. Gynecol. 98, 144–150.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pariante, C. M. , Makoff, A. , Lovestone, S. , Feroli, S. , Heyden, A. , Miller, A. H. , and Kerwin, R. W. (2001). Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br. J. Pharmacol. 134, 1335–1343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Resko, J. A. , and Roselli, C. E. (1997). Prenatal hormones organize sex differences of the neuroendocrine reproductive system: Observations ion guinea pigs and non-human primates. Cell. Mol. Neurobiol. 17, 627–648.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Semont, A. , Fache, M. , Hery, F. , Faudon, M. , Youssouf, F. , and Hery, M. (2000). Regulation of central corticosteroid receptors following short-term activation of serotonin transmission by 5-hydroxy-l-tryptophan or fluoxetine. J. Neuroendocrinol. 12, 736–744.
Crossref | l
-tryptophan or fluoxetine.&journal=J. Neuroendocrinol.&volume=12&pages=736-744&publication_year=2000&author=A%2E%20Semont&hl=en&doi=10.1046/J.1365-2826.2000.00509.X" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed |

Slotkin, T. A. , Barnes, G. A. , McCook, E. C. , and Seidler, F. J. (1996). Programming of brainstem serotonin transporter development by prenatal glucocorticoids. Brain Res. Dev. Brain Res. 93, 155–161.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, G. N. , Kingdom, J. C. , Penning, D. H. , and Matthews, S. G. (2000). Antenatal corticosteroids: is more better? Lancet 355, 251–252.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Uno, H. , Lohmiller, L. , Thieme, C. , Kemnitz, J. W. , Engle, M. J. , Roecker, E. B. , and Farrell, P. M. (1990). Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res. Dev. Brain Res. 53, 157–167.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Uno, H. , Eisele, S. , Sakai, A. , Shelton, S. , Baker, E. , DeJesus, O. , and Holden, J. (1994). Neurotoxicity of glucocorticoids in the primate brain. Horm. Behav. 28, 336–348.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vedder, H. , Weiss, I. , Holsboer, F. , and Reul, J. M. (1993). Glucocorticoid and mineralocorticoid receptors in rat neocortical and hippocampal brain cells in culture: characterization and regulatory studies. Brain Res. 605, 18–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weaver, I. C. , La Plante, P. , Weaver, S. , Parent, A. , Sharma, S. , Diorio, J. , Chapman, K. E. , Seckl, J. R. , Szyf, M. , and Meaney, M. J. (2001). Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Mol. Cell. Endocrinol. 185, 205–218.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Welberg, L. A. , Seckl, J. R. , and Holmes, M. C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104, 71–79.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yau, J. L. , Hibberd, C. , Noble, J. , and Seckl, J. R. (2002). The effect of chronic fluoxetine treatment on brain corticosteroid receptor mRNA expression and spatial memory in young and aged rats. Brain Res. Mol. Brain Res. 106, 117–123.
Crossref | GoogleScholarGoogle Scholar | PubMed |