Progesterone receptors and proliferating cell nuclear antigen expression in equine luteal tissue
R. P. Roberto da Costa A , V. Branco A , P. Pessa B , J. Robalo Silva C and G. Ferreira-Dias C DA Escola Superior Agrária, Bencanta, 3040-316 Coimbra, Portugal.
B Hospitais da Universidade de Coimbra, 3000-075 Coimbra, Portugal.
C CIISA, Faculdade de Medicina Veterinária, R. Prof. Cid dos Santos, 1300-477 Lisboa, Portugal.
D Corresponding author. Email: gmlfdias@fmv.utl.pt
Reproduction, Fertility and Development 17(6) 659-666 https://doi.org/10.1071/RD05024
Submitted: 2 March 2005 Accepted: 16 June 2005 Published: 29 July 2005
Abstract
Steroid hormones act via specific receptors, and these play an important physiological role in the ovary. The objective of this study was to evaluate the cellular distribution of progesterone receptors and their staining intensity in different equine luteal structures during the breeding season, as well as their relationship to luteal cell composition, cell proliferation pattern and plasma progesterone (P4) concentration. There was an increase in proliferating cell nuclear antigen (PCNA) expression in large luteal cells from the corpus hemorrhagicum (CH) to mid-luteal phase, followed by a decrease toward the late luteal stage. In the CH, the number of large luteal cells was lower than in other structures. Only large luteal cells showed positive staining for P4 receptors. An increase in staining intensity for P4 receptors was observed between CH and mid-phase corpus luteum, and CH and late-phase corpus luteum. Synthesis of P4 started at a very early stage of the luteal structure and was accompanied by an increase in P4 receptors and PCNA expression, and proliferation of large luteal cells, until mid-luteal phase. These data suggest that large luteal cells might play an important role in the regulation or synthesis of P4 in equine luteal structures.
Acknowledgments
This article was supported by grant CIISA-CL45. The authors wish to thank Dr Paula Serrão, Mrs Ana Maria Amaral and Mrs Patrícia Diniz for technical assistance.
Alila, H. W. , and Hansel, W. (1984). Origin of different cell types in the bovine corpus luteum as characterized by specific monoclonal antibodies. Biol. Reprod. 31, 1015–1025.
| PubMed |
Broadley, C. , Menzies, G. S. , Bramley, T. A. , and Watson, E. D. (1994). Isolation of cell populations from the mare corpus luteum: comparison of mechanical and collagenase dissociation. J. Reprod. Fertil. 102, 7–15.
| PubMed |
Farin, C. E. , Moeller, C. L. , Sawyer, H. R. , Gamboni, E. , and Niswender, G. D. (1986). Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle. Biol. Reprod. 35, 1299–1308.
| PubMed |
Grazul-Bilska, A. T. , Redmer, D. A. , and Reynolds, L. P. (1991). Secretion of angiogenic activity and progesterone by ovine luteal cell types in vitro. J. Anim. Sci. 69, 2099–2107.
| PubMed |
Grazul-Bilska, A. T. , Redmer, D. A. , Jablonka-Shariff, A. , Biondini, M. E. , and Reynolds, L. P. (1995). Proliferation and progesterone production of ovine luteal cells from several stages of the estrous cycle: effects of fibroblast growth factors and luteinizing hormones. Can. J. Physiol. Pharmacol. 73, 491–500.
| PubMed |
Gregoraszczuk, E. L. (1996). Large and small cells of the porcine corpus luteum: Different capacity to secrete estradiol and aromatase exogenous androgen during mid- and late luteal phase. Exp. Clin. Endocrinol. Diabetes 104, 278–283.
| PubMed |
Gregoraszczuk, E. L. (1997). Progesterone, androgen and estradiol production by porcine luteal cell subpopulations: Dependence on cell composition and periods of luteal phase. Endocr. Regul. 31, 41–46.
| PubMed |
Hansel, W. , Alila, W. , Dowd, J. P. , and Milvae, R. A. (1991). Differential origin and control mechanism in small and large bovine luteal cells. J. Reprod. Fertil. Suppl. 43, 77–89.
| PubMed |
Hild-Petito, S. , Stouffer, R. L. , and Brenner, R. M. (1988). Immunocytochemical localization of estradiol and progesterone receptors in the monkey ovary throughout the menstrual cycle. Endocrinology 123, 2896–2905.
| PubMed |
Hubler, T. , Denny, W. , Valentine, D. , Cheung-Flynn, J. , Smith, D. , and Schammell, J. (2003). The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology 144, 2380–2387.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Iwai, T. , Nanbu, Y. , Iwai, M. , Taii, S. , Fujii, S. , and Mori, T. (1990). Immunohistochemical localization of oestrogen receptors and progesterone receptors in the human ovary throughout the menstrual cycle. Virchows Arch. A 417, 369–375.
| Crossref | GoogleScholarGoogle Scholar |
Jablonka-Shariff, A. , Grazul-Bilska, A. T. , Redmer, D. A. , and Reynolds, L. P. (1993). Growth and cellular proliferation of ovine corpora lutea throughout the estrous cycle. Endocrinology 133, 1871–1879.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kelly, C. M. , Hoyer, P. B. , and Wise, M. E. (1988). In-vitro and in-vivo responsiveness of the corpus luteum of the mare to gonadotropin stimulation. J. Reprod. Fertil. 84, 593–600.
| PubMed |
Korte, J. M. , and Isola, J. J. (1988). An immunocytochemical study of the progesterone receptor in rabbit ovary. Mol. Cell. Endocrinol. 58, 93–101.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kotwica, J. , Rekawiecki, R. , and Duras, M. (2004). Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. B. Vet. I. Pulawy. 48, 139–145.
Lawler, D. F. , Hopkins, J. , and Watson, E. (1999). Immune cell populations in the equine corpus luteum throughout the oestrous cycle and early pregnancy: an immunohistochemical and flow cytometric study. J. Reprod. Fertil. 117, 281–290.
| PubMed |
Lei, Z. M. , Chegini, N. , and Rao, C. V. (1991). Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biol. Reprod. 44, 1148–1156.
| PubMed |
McDowell, K. J. , Adams, M. H. , Adam, C. Y. , and Simpson, K. S. (1999). Changes in the equine endometrial oestrogen receptor α and progesterone receptor mRNAs during the oestrous cycle, early pregnancy and after treatment with exogenous steroids. J. Reprod. Fertil. 117, 135–142.
| PubMed |
Modlich, U. , Kaup, F.-J. , and Augustin, H. G. (1996). Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab. Invest. 74, 771–780.
| PubMed |
Murphy, B. D. (2000). Models of luteinization – Minireview. Biol. Reprod. 63, 2–11.
| PubMed |
Ohleth, K. M. , and Bagnell, C. A. (1999). Relaxin secretion and gene expression in porcine granulosa and theca cells stimulated during in vitro luteinization. Biol. Reprod. 60, 499–507.
| PubMed |
Okuda, K. , Korzekwa, A. , Shibaya, M. , Murakami, S. , Nishimura, R. , Tsubouchi, M. , Woclawek-Potocka, I. , and Skarzynski, D. J. (2004). Progesterone is a suppressor of apoptosis in bovine luteal cells. Biol. Reprod. 71, 2065–2071.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
O’Shea, J. D. , Rodgers, R. J. , and Wright, P. J. (1986). Cellular composition of the sheep corpus luteum in the mid- and late luteal phases of the oestrous cycle. J. Reprod. Fertil. 76, 685–691.
| PubMed |
O’Shea, J. D. , Rodgers, R. J. , and D’Occhio, M. J. (1989). Cellular composition of the cyclic corpus luteum of the cow. J. Reprod. Fertil. 85, 483–487.
| PubMed |
Ottander, U. , Hosokawa, K. , Loi, K. , Bergh, A. , Ny, T. , and Olofsson, J. (2000). A putative stimulatory role of progesterone acting via progesterone receptors in the steroidogenic cells of the human corpus luteum. Biol. Reprod. 62, 655–663.
| PubMed |
Rae, M. T. , Menzies, G. S. , McNeilly, A. S. , Webb, K. , and Bramley, T. A. (1998). Specific non-genomic, membrane-localized binding sites for progesterone in the bovine corpus luteum. Biol. Reprod. 58, 1394–1406.
| PubMed |
Re, G. , Badino, P. , and Novelli, A. (1995). Distribution of cytosolic oestrogen and progesterone receptors in the genital tract of the mare. Res. Vet. Sci. 59, 214–218.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Revelli, A. , Pacchioni, D. , Cassoni, P. , Bussolati, G. , and Massobrio, M. (1996). In situ hybridization study of messenger RNA for estrogen receptors and immunohistochemical detection of estrogen and progesterone receptors in the human ovary. Gynecol. Endocrinol. 10, 177–186.
| PubMed |
Reynolds, L. P. (1986). Utero-ovarian interactions during early pregnancy: role of conceptus-induced vasodilation. J. Anim. Sci. 62((Suppl. 2)), 47–61.
| PubMed |
Reynolds, L. P. , and Redmer, D. A. (1999). Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 54, 181–191.
| PubMed |
Reynolds, L. P. , Killilea, S. D. , and Redmer, D. A. (1992). Angiogenesis in the female reproductive tract. FASEB J. 6, 886–892.
| PubMed |
Ricke, W. A. , Redmer, D. A. , and Reynolds, L. P. (1999). Growth and cellular proliferation of pig corpora lutea throughout the oestrous cycle. J. Reprod. Fertil. 117, 369–377.
| PubMed |
Rothchild, I. (1981). The regulation of mammalian corpus luteum. Recent Prog. Horm. Res. 37, 183–298.
| PubMed |
Rueda, B. R. , Hendry, I. R. , Hendry, W. J. , Stormshak, F. , Slyden, O. D. , and Davis, J. S. (2000). Decreased progesterone levels and progesterone receptor anatagonist promote apoptotic cell death in bovine luteal cells. Biol. Reprod. 62, 269–276.
| PubMed |
Schwall, R. H. , Gamboni, F. , Mayan, M. H. , and Niswender, G. D. (1986). Changes in the distribution of sizes of ovine luteal cells during the estrous cycle. Biol. Reprod. 34, 911–918.
| PubMed |
Skarzynski, D. J. , and Okuda, K. (1999). Sensitivity of bovine corpora lutea to prostaglandin F2α is dependent on progesterone, oxytocin and prostaglandins. Biol. Reprod. 60, 1292–1298.
| PubMed |
Slomczynska, M. , Krok, M. , and Pierscinski, A. (2000). Localization of the progesterone receptor in the porcine ovary. Acta Histochem. 102, 183–191.
| PubMed |
Suzuki, T. , Sasano, H. , Kimura, N. , Tamura, M. , Fukaya, T. , Yajima, A. , and Nagura, H. (1994). Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Human Reproduction 9, 1589–1595.
| PubMed |
Tomanelli, R. N. , Sertich, P. L. , and Watson, E. D. (1991). Soluble oestrogen and progesterone receptors in the endometrium of the mare. J. Reprod. Fertil. Suppl. 44, 267–273.
| PubMed |
van Niekerk, C. H. , Morgenthal, J. C. , and Gerneke, W. H. (1975). Relationship between the morphology of progesterone production by corpus of the mare. J. Reprod. Fertil. Suppl. 23, 171–175.
| PubMed |
Vermeirsch, H. , Simoens, P. , Coryn, M. , and Van den Broeck, W. (2001). Immunolocalization of progesterone receptors in canine ovary and their relation to sex steroid hormone concentration. Reproduction 122, 73–83.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Watson, E. D. , Skolnik, S. B. , and Zanecosky, H. G. (1992). Progesterone and estrogen receptor distribution in the endometrium of the mare. Theriogenology 38, 575–580.
| Crossref | GoogleScholarGoogle Scholar |
Wiesak, T. , Hardin, R. T. , and Foxcroft, G. R. (1994). Evaluation of in vitro culture conditions to demonstrate pregnancy-dependent changes in luteal function in the pig. Biol. Reprod. 51, 254–261.
| PubMed |
Zheng, J. , Frickle, P. M. , Reynolds, L. P. , and Redmer, D. A. (1994). Evaluation of growth, cell proliferation, and cell death in bovine corpora lutea throughout the estrous cycle. Biol. Reprod. 51, 623–632.
| PubMed |