Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential

Jeong Tae Do A B and Hans R. Schöler A B C
+ Author Affiliations
- Author Affiliations

A Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA.

B Present address: Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Mendelstrasse 7, 48149 Münster, Germany.

C Corresponding author. Email: schoeler@mpi-muenster.mpg.de

Reproduction, Fertility and Development 17(2) 143-149 https://doi.org/10.1071/RD04120
Submitted: 1 August 2004  Accepted: 1 October 2004   Published: 1 January 2005

Abstract

Embryonic stem cells (ESCs) are the pluripotent cells that also have the capacity to induce the genomic reprogramming of differentiated somatic cells. The progressively restricted genomic potential of somatic cells observed during embryonic development can be reverted to a pluripotent state by the formation of cell hybrids with ESCs. To assess the reprogramming potential of ESCs, we investigated the reprogramming of one of two different somatic cell populations, neurosphere cells (NSCs) and cumulus cells (CCs), after fusion with ESCs. Specifically, hybrid cells were produced by cell fusion of E14 ESCs with either NSCs or CCs containing the neo/lacZ and Oct4-GFP transgenes. The first reprogramming event, observed by the presence of Oct4-GFP in the hybrid cells, could be identified on Day 2, at approximately 45 h after fusion in both ESC-NSC and ESC-CC hybrids. In addition, the two ESC–somatic cell hybrids exhibit a similar reprogramming rate and share characteristics with the E14 ESC line: (1) expression of pluripotent markers (Oct4, Rex-1 and nanog); (2) inactivation of differentiated tissue-specific gene expression; and (3) the capacity to differentiate into all three germ layers. Taken together, our results suggest that the ESC–somatic cell hybrids have fully acquired ESC characteristics and that somatic cells of different tissue origin have the same potential to be reprogrammed after fusion with ESCs.

Extra keyword: Oct4.


References

Bartlett, P. F. , Brooker, G. J. , Faux, C. H. , Dutton, R. , Murphy, M. , Turnley, A. , and Kilpatrick, T. J. (1998). Regulation of neural stem cell differentiation in the forebrain. Immunol. Cell Biol. 76, 414–418.
PubMed |

Bortvin, A. , Eggan, K. , Skaletsky, H. , Akutsu, H. , Berry, D. L. , Yanagimachi, R. , Page, D. C. , and Jaenisch, R. (2003). Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bunting, K. D. , and Hawley, R. G. (2003). Integrative molecular and developmental biology of adult stem cells. Biol. Cell. 95, 563–578.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Byrne, J. A. , Simonsson, S. , Western, P. S. , and Gurdon, J. B. (2003). Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13, 1206–1213.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dennis, C. (2003). Take a cell, any cell. Nature 426, 490–491.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Do, J. T. , and Schöler, H. R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Do, J. T. , Hong, K. H. , Lee, B. Y. , Kim, S. B. , Kim, N. H. , Lee, H. T. , and Chung, K. S. (2001). In vitro development of reconstructed bovine embryos and fate of donor mitochondria following nuclear injection of cumulus cells. Zygote 9, 211–218.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Donovan, P. J. , and Gearhart, J. (2001). The end of the beginning for pluripotent stem cells. Nature 414, 92–97.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Eggan, K. , Akutsu, H. , Loring, J. , Jackson-Grusby, L. , Klemm, M. , Rideout, W. M. , Yanagimachi, R. , and Jaenisch, R. (2001). Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl Acad. Sci. USA 98, 6209–6214.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Eggan, K. , Baldwin, K. , Tackett, M. , Oshborne, J. , Gogos, J. , Chess, A. , Axel, R. , and Jaenisch, R. (2004). Mice cloned from olfactory sensory neurons. Nature 428, 44–49.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Flasza, M. , Shering, A. F. , Smith, K. , Andrews, P. W. , Talley, P. , and Johnson, P. A. (2003). Reprogramming in inter-species embryonal carcinoma–somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells 5, 339–354.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Johansson, B. M. , and Wiles, M. V. (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151.
PubMed |

Junker, S. , Lamm, M. , Nielsen, V. , and Matthias, P. (1997). Extinction of immunoglobulin gene expression in B cells upon fusion with HeLa cells is preceded by rapid nuclear depletion of essential transcription factors and is accompanied by widespread inactivation of genes expressed in a B cell-specific manner. J. Cell Sci. 110, 2579–2587.
PubMed |

Lavranos, T. C. , Mathis, M. M. , Lathan, S. E. , Kalionis, B. , Shay, J. W. , and Rodgers, R. J. (1999). Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol. Reprod. 61, 358–366.
PubMed |

Lentz, B. R. (1994). Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem. Phys. Lipids 73, 91–106.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Matveeva, N. M. , Shilov, A. G. , Kaftanovskaya, E. M. , Maximovsky, L. P. , Zhelezova, A. I. , Golubitsa, A. N. , Bayborodin, S. I. , Fokina, M. M. , and Serov, O. L. (1998). In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol. Reprod. Dev. 50, 128–138.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mitsui, K. , Tokuzawa, Y. , Itoh, H. , Segawa, K. , Murakami, M. , Takahashi, K. , Maruyama, M. , Maeda, M. , and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oback, B. , and Wells, D. (2002). Donor cells for nuclear cloning: many are called, but few are chosen. Cloning Stem Cells 4, 147–168.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pells, S. , Di Domenico, A. I. , Gallagher, E. J. , and McWhir, J. (2002). Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 4, 331–338.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pesce, M. , and Schöler, H. R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271–278.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Richards, J. S. , Russell, D. L. , Robker, R. L. , Dajee, M. , and Alliston, T. N. (1998). Molecular mechanisms of ovulation and luteinization. Mol. Cell. Endocrinol. 145, 47–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rideout, W. M. , Eggan, K. , and Jaenisch, R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sims, M. , and First, N. L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl Acad. Sci. USA 91, 6143–6147.
PubMed |

Szabo, P. E. , Hubner, K. , Schöler, H. , and Mann, J. R. (2002). Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115, 157–160.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tada, M. , Tada, T. , Lefebvre, L. , Barton, S. C. , and Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tada, M. , Takahama, Y. , Abe, K. , Nakatsuji, N. , and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ESCs. Curr. Biol. 11, 1553–1558.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tada, M. , Morizane, A. , Kimura, H. , Kawasaki, H. , Ainscough, J. F. X. , Sasai, Y. , Nakatsuji, N. , and Tada, T. (2003). Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev. Dyn. 227, 504–510.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Terada, N. , Hamazaki, T. , Oka, M. , Hoki, M. , Mastalerz, D. M. , Nakano, Y. , Meyer, E. M. , Morel, L. , Petersen, B. E. , and Scott, E. W. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vassilopoulos, G. , Wang, P. R. , and Russel, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wakayama, T. , Perry, A. C. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocyte injected with cumulus cell nuclei. Nature 394, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, X. , Willenbring, H. , Akkari, Y. , Foster, M. , Al-Dhalimy, M. , Lagasse, E. , Olson, S. , and Grompe, M. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamazaki, Y. , Mann, M. R. W. , Lee, S. S. , Marh, J. , McCarrey, J. R. , Yanagimachi, R. , and Bartolomei, M. S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA 100, 12 207–12 212.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ying, Q. L. , Nichols, J. , Evans, E. P. , and Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature 416, 545–548.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhao, Y. , Glesne, D. , and Huberman, E. (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl Acad. Sci. USA 100, 2426–2431.
Crossref | GoogleScholarGoogle Scholar | PubMed |