Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures
Jakob O. Gjørret A B and Poul Maddox-Hyttel AA Department of Animal and Veterinary Sciences, Royal Veterinary and Agricultural University, Denmark.
B Corresponding author. Email: jog@kvl.dk
Reproduction, Fertility and Development 17(2) 113-124 https://doi.org/10.1071/RD04117
Submitted: 1 August 2004 Accepted: 1 October 2004 Published: 1 January 2005
Abstract
Current knowledge on the biology of mammalian embryonic stem cells (ESC) is stunningly sparse in light of their potential value in studies of development, functional genomics, generation of transgenic animals and human medicine. Despite many efforts to derive ESC from other mammalian species, ESC that retain their capacity for germ line transmission have only been verified in the mouse. However, the criterion of germ line transmission may not need to be fulfilled for exploitation of other abilities of these cells. Promising results with human ESC-like cells and adult stem cells have nourished great expectations for their potential use in regenerative medicine. However, such an application is far from reality and substantial research is required to elucidate aspects of the basic biology of pluripotent cells, as well as safety issues associated with the use of such cells in therapy. In this context, methods for the derivation, propagation and differentiation of ESC-like cultures from domestic animals would be highly desirable as biologically relevant models. Here, we review previously published efforts to establish bovine ESC-like cells and describe a procedure used in attempts to derive similar cells from bovine Day 12 embryos.
Acknowledgments
The authors thank Dr Giovanna Lazzari for initial support to get started with the mechanical isolation of embryonic discs from late-stage bovine embryos. The authors also thank Dr Dean Betts for comments and suggestions during the preparation of this manuscript. Some of the work presented was supported by a research grant from the Danish Agricultural and Veterinary Research Council.
Amit, M. , Carpenter, M. K. , Inokuma, M. S. , Chiu, C. P. , Harris, C. P. , Waknitz, M. A. , Itskovitz-Eldor, J. , and Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Betts, D. , Bordignon, V. , Hill, J. , Winger, Q. , Westhusin, M. , Smith, L. , and King, W. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl Acad. Sci. USA 98, 1077–1082.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bjorklund, L. M. , Sanchez-Pernaute, R. , Chung, S. , Andersson, T. , and Chen, I. Y. , et al. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 99, 2344–2349.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bordignon, V. , Keyston, R. , Lazaris, A. , Bilodeau, A. S. , Pontes, J. H. , Arnold, D. , Fecteau, G. , Keefer, C. , and Smith, L. C. (2003). Transgene expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells. Biol. Reprod. 68, 2013–2023.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Brook, F. A. , and Gardner, R. L. (1997). The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl Acad. Sci. USA 94, 5709–5712.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Brustle, O. , Jones, K. N. , Learish, R. D. , Karram, K. , Choudhary, K. , Wiestler, O. D. , Duncan, I. D. , and McKay, R. D. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Buehr, M. , Nichols, J. , Stenhouse, F. , Mountford, P. , Greenhalgh, C. J. , Kantachuvesiri, S. , Brooker, G. , Mullins, J. , and Smith, A. G. (2003). Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol. Reprod. 68, 222–229.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science 244, 1288–1292.
| PubMed |
Carpenter, M. K. , Rosler, E. , and Rao, M. S. (2003). Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cervantes, R. B. , Stringer, J. R. , Shao, C. , Tischfield, J. A. , and Stambrook, P. J. (2002). Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl Acad. Sci. USA 99, 3586–3590.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chambers, I. , Colby, D. , Robertson, M. , Nichols, J. , Lee, S. , Tweedie, S. , and Smith, A. (2003). Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cibelli, J. B. , Stice, S. L. , Golueke, P. J. , Kane, J. J. , Jerry, J. , Blackwell, C. , Ponce de Leon, F. A. , and Robl, J. M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Colman, A. , and Kind, A. (2000). Therapeutic cloning: concepts and practicalities. Trends Biotechnol. 18, 192–196.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Denning, C. , and Priddle, H. (2003). New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction 126, 1–11.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Draper, J. S. , Smith, K. , Gokhale, P. , Moore, H. D. , Maltby, E. , Johnson, J. , Meisner, L. , Zwaka, T. P. , Thomson, J. A. , and Andrews, P. W. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Drukker, M. , and Benvenisty, N. (2004). The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol. 22, 136–141.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fiester, A. , Scholer, H. , and Caplan, A. (2004). Stem cell therapies: time to talk to the animals. Cloning Stem Cells 6, 3–4.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
First, N. L. , Sims, M. M. , Park, S. P. , and Kent-First, M. J. (1994). Systems for production of calves from cultured bovine embryonic cells. Reprod. Fertil. Dev. 6, 553–562.
| PubMed |
Gardner, R. L. , and Brook, F. A. (1997). Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol. 41, 235–243.
| PubMed |
Geijsen, N. , Horoschak, M. , Kim, K. , Gribnau, J. , Eggan, K. , and Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ginis, I. , Luo, Y. , Miura, T. , Thies, S. , and Brandenberger, R. , et al. (2004). Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hochedlinger, K. , and Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hochepied, T. , Schoojans, L. , Staelens, J. , Kreemers, V. , Danloy, S. , Puimege, L. , Collen, D. , Van Roy, F. , and Libert, C. (2004). Breaking the species barrier: derivation of germline-component embryonic stem cells from Mus spretus × C57BL/6 hybrids. Stem Cells 22, 441–447.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Holm, P. , Booth, P. J. , Schmidt, M. H. , Greve, T. , and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hubner, K. , Fuhrmann, G. , Christenson, L. K. , Kehler, J. , Reinbold, R. , De La, F. R. , Wood, J. , Strauss, J. F. , Boiani, M. , and Scholer, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Humpherys, D. , Eggan, K. , Akutsu, H. , Hochedlinger, K. , Rideout, W. M. , Biniszkiewicz, D. , Yanagimachi, R. , and Jaenisch, R. (2001). Epigenetic instability in ES cells and cloned mice. Science 293, 95–97.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hwang, W. S. , Ryu, Y. J. , Park, J. H. , Park, E. S. , and Lee, E. G. , et al. (2004). Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Iwasaki, S. , Campbell, K. H. , Galli, C. , and Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol. Reprod. 62, 470–475.
| PubMed |
Jaenisch, R. , Eggan, K. , Humpherys, D. , Rideout, W. , and Hochedlinger, K. (2002). Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells 4, 389–396.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jiang, Y. , Jahagirdar, B. N. , Reinhardt, R. L. , Schwartz, R. E. , and Keene, C. D. , et al. (2002a). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jiang, Y. , Vaessen, B. , Lenvik, T. , Blackstad, M. , Reyes, M. , and Verfaillie, C. M. (2002b). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kirchhof, N. , Carnwath, J. W. , Lemme, E. , Anastassiadis, K. , Scholer, H. , and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
| PubMed |
Klug, M. G. , Soonpaa, M. H. , Koh, G. Y. , and Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224.
| PubMed |
Liu, S. , Qu, Y. , Stewart, T. J. , Howard, M. J. , Chakrabortty, S. , Holekamp, T. F. , and McDonald, J. W. (2000). Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl Acad. Sci. USA 97, 6126–6131.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Maddox-Hyttel, P. , Alexopoulos, N. I. , Vajta, G. , Lewis, I. , Rogers, P. , Cann, L. , Callesen, H. , Tveden-Nyborg, P. , and Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–623.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
McMahon, A. P. , and Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Mitalipova, M. , Beyhan, Z. , and First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 59–67.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Mitalipova, M. , Calhoun, J. , Shin, S. , Wininger, D. , Schulz, T. , Noggle, S. , Venable, A. , Lyons, I. , Robins, A. , and Stice, S. (2003). Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21, 521–526.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Mombaerts, P. (2003). Therapeutic cloning in the mouse. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11 924–11 925.
| Crossref | GoogleScholarGoogle Scholar |
Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct. 26, 137–148.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Niwa, H. , Miyazaki, J. , and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oback, B. , and Wells, D. (2002). Donor cells for cloning: many are called, but few are chosen. Cloning Stem Cells 4, 147–168.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Piedrahita, J. A. (2000). Gene targeting in domestic species: a new beginning. Transgen. Res. 9, 261–262.
| Crossref | GoogleScholarGoogle Scholar |
Prelle, K. , Vassiliev, I. M. , Vassilieva, S. G. , Wolf, E. , and Wobus, A. M. (1999). Establishment of pluripotent cell lines from vertebrate species: present status and future prospects. Cells Tissues Organs 165, 220–236.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Prelle, K. , Zink, N. , and Wolf, E. (2002). Pluripotent stem cells: model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat. Histol. Embryol. 31, 169–186.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Resnick, J. L. , Bixler, L. S. , Cheng, L. , and Donovan, P. J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Reubinoff, B. E. , Pera, M. F. , Fong, C. Y. , Trounson, A. , and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rideout, W. M. , Hochedlinger, K. , Kyba, M. , Daley, G. Q. , and Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Saito, S. , Sawai, K. , Ugai, H. , Moriyasu, S. , and Minamihashi, A. , et al. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem. Biophys. Res. Commun. 309, 104–113.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Shamblott, M. J. , Axelman, J. , Wang, S. , Bugg, E. M. , Littlefield, J. W. , Donovan, P. J. , Blumenthal, P. D. , Huggins, G. R. , and Gearhart, J. D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13 726–13 731.
| Crossref | GoogleScholarGoogle Scholar |
Smith, A. G. (2001). Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stekelenburg-Hamers, A. E. , Van Achterberg, T. A. , Rebel, H. G. , Flechon, J. E. , Campbell, K. H. , Weima, S. M. , and Mummery, C. L. (1995). Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Mol. Reprod. Dev. 40, 444–454.
| PubMed |
Stice, S. L. , Strelchenko, N. S. , Keefer, C. L. , and Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110.
| PubMed |
Strelchenko, N. S. (1996). Bovine pluripotnent stem cells. Theriogenology 45, 131–140.
| Crossref | GoogleScholarGoogle Scholar |
Tada, M. , Takahama, Y. , Abe, K. , Nakatsuji, N. , and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Talbot, N. C. , Powell, A. M. , and Rexroad, C. E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42, 35–52.
| PubMed |
Thomson, J. A. , Itskovitz-Eldor, J. , Shapiro, S. S. , Waknitz, M. A. , Swiergiel, J. J. , Marshall, V. S. , and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Toyooka, Y. , Tsunekawa, N. , Akasu, R. , and Noce, T. (2003). Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11 457–11 462.
| Crossref | GoogleScholarGoogle Scholar |
van Eijk, M. J. , van Rooijen, M. A. , Modina, S. , Scesi, L. , and Folkers, G. , et al. (1999). Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol. Reprod. 60, 1093–1103.
| PubMed |
Wagers, A. J. , and Weissman, I. L. (2004). Plasticity of adult stem cells. Cell 116, 639–648.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wakayama, T. (2004). On the road to therapeutic cloning. Nat. Biotechnol. 22, 399–400.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wakayama, T. , Tabar, V. , Rodriguez, I. , Perry, A. C. , Studer, L. , and Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wells, D. N. , Oback, B. , and Laible, G. (2003). Cloning livestock: a return to embryonic cells. Trends Biotechnol. 21, 428–432.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wheeler, M. B. , Clark, S. G. , and Beebe, D. J. (2004). Developments in in vitro technologies for swine embryo production. Reprod. Fertil. Dev. 16, 15–25.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wilmut, I. , Beaujean, N. , De Sousa, P. A. , Dinnyes, A. , King, T. J. , Paterson, L. A. , Wells, D. N. , and Young, L. E. (2002). Somatic cell nuclear transfer. Nature 419, 583–586.
| Crossref | GoogleScholarGoogle Scholar | PubMed |